Efficient computation of maximum weighted independent sets on weighted dynamic graph

An independent set is a set of vertices in a graph in which no two vertices are adjacent to each other. The maximum weighted independent set is the independent set with the largest sum of weights in a weighted graph. Considering that existing methods are inefficient when computing the maximum weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-05, Vol.80 (8), p.10418-10443
Hauptverfasser: Tan, Yuting, Zhou, Junfeng, Rong, Xinqi, Du, Ming, Qi, Caiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10443
container_issue 8
container_start_page 10418
container_title The Journal of supercomputing
container_volume 80
creator Tan, Yuting
Zhou, Junfeng
Rong, Xinqi
Du, Ming
Qi, Caiyun
description An independent set is a set of vertices in a graph in which no two vertices are adjacent to each other. The maximum weighted independent set is the independent set with the largest sum of weights in a weighted graph. Considering that existing methods are inefficient when computing the maximum weighted independent set, we propose a combined neighbor reduction rule and a loss value-based greedy strategy to improve the efficiency and increase the weight of the independent set. Additionally, we propose the efficient approximate algorithms for the maximum weighted independent set on dynamic graphs. We decompose the weight change problem into five cases and propose corresponding strategies for each case. Finally, we conduct experiments on 8 real-world datasets to verify the effectiveness and efficiency of the proposed methods.
doi_str_mv 10.1007/s11227-023-05841-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051510826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051510826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f735993604c0d73d5561336e68b02395477f4d872ac8fa15c5a3fec0268c92b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rka5M9SqlWKHip55BmkzbF_TDZRfvvja7ozcsMwzzvvMyL0DWBWwIg7xIhlMoCKCtAKE6K6gTNiJB55IqfohlUFAolOD1HFykdAIAzyWZos_Q-2ODaAduu6cfBDKFrcedxYz5CMzb43YXdfnA1Dm3tepdLZpMbEs7c77I-tqYJFu-i6feX6Myb1-SufvocvTwsN4tVsX5-fFrcrwtLJQyFl0xUFSuBW6glq4UoCWOlK9U2P1IJLqXntZLUWOUNEVYY5p0FWipb0a1kc3Qz3e1j9za6NOhDN8Y2W2oGgggCipaZohNlY5dSdF73MTQmHjUB_ZWentLT2VR_p6erLGKTKGW43bn4d_of1Scy4nIb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051510826</pqid></control><display><type>article</type><title>Efficient computation of maximum weighted independent sets on weighted dynamic graph</title><source>SpringerLink Journals</source><creator>Tan, Yuting ; Zhou, Junfeng ; Rong, Xinqi ; Du, Ming ; Qi, Caiyun</creator><creatorcontrib>Tan, Yuting ; Zhou, Junfeng ; Rong, Xinqi ; Du, Ming ; Qi, Caiyun</creatorcontrib><description>An independent set is a set of vertices in a graph in which no two vertices are adjacent to each other. The maximum weighted independent set is the independent set with the largest sum of weights in a weighted graph. Considering that existing methods are inefficient when computing the maximum weighted independent set, we propose a combined neighbor reduction rule and a loss value-based greedy strategy to improve the efficiency and increase the weight of the independent set. Additionally, we propose the efficient approximate algorithms for the maximum weighted independent set on dynamic graphs. We decompose the weight change problem into five cases and propose corresponding strategies for each case. Finally, we conduct experiments on 8 real-world datasets to verify the effectiveness and efficiency of the proposed methods.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05841-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Apexes ; Compilers ; Computer Science ; Graph theory ; Interpreters ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2024-05, Vol.80 (8), p.10418-10443</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f735993604c0d73d5561336e68b02395477f4d872ac8fa15c5a3fec0268c92b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05841-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05841-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tan, Yuting</creatorcontrib><creatorcontrib>Zhou, Junfeng</creatorcontrib><creatorcontrib>Rong, Xinqi</creatorcontrib><creatorcontrib>Du, Ming</creatorcontrib><creatorcontrib>Qi, Caiyun</creatorcontrib><title>Efficient computation of maximum weighted independent sets on weighted dynamic graph</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>An independent set is a set of vertices in a graph in which no two vertices are adjacent to each other. The maximum weighted independent set is the independent set with the largest sum of weights in a weighted graph. Considering that existing methods are inefficient when computing the maximum weighted independent set, we propose a combined neighbor reduction rule and a loss value-based greedy strategy to improve the efficiency and increase the weight of the independent set. Additionally, we propose the efficient approximate algorithms for the maximum weighted independent set on dynamic graphs. We decompose the weight change problem into five cases and propose corresponding strategies for each case. Finally, we conduct experiments on 8 real-world datasets to verify the effectiveness and efficiency of the proposed methods.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Graph theory</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rka5M9SqlWKHip55BmkzbF_TDZRfvvja7ozcsMwzzvvMyL0DWBWwIg7xIhlMoCKCtAKE6K6gTNiJB55IqfohlUFAolOD1HFykdAIAzyWZos_Q-2ODaAduu6cfBDKFrcedxYz5CMzb43YXdfnA1Dm3tepdLZpMbEs7c77I-tqYJFu-i6feX6Myb1-SufvocvTwsN4tVsX5-fFrcrwtLJQyFl0xUFSuBW6glq4UoCWOlK9U2P1IJLqXntZLUWOUNEVYY5p0FWipb0a1kc3Qz3e1j9za6NOhDN8Y2W2oGgggCipaZohNlY5dSdF73MTQmHjUB_ZWentLT2VR_p6erLGKTKGW43bn4d_of1Scy4nIb</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tan, Yuting</creator><creator>Zhou, Junfeng</creator><creator>Rong, Xinqi</creator><creator>Du, Ming</creator><creator>Qi, Caiyun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Efficient computation of maximum weighted independent sets on weighted dynamic graph</title><author>Tan, Yuting ; Zhou, Junfeng ; Rong, Xinqi ; Du, Ming ; Qi, Caiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f735993604c0d73d5561336e68b02395477f4d872ac8fa15c5a3fec0268c92b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Graph theory</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Yuting</creatorcontrib><creatorcontrib>Zhou, Junfeng</creatorcontrib><creatorcontrib>Rong, Xinqi</creatorcontrib><creatorcontrib>Du, Ming</creatorcontrib><creatorcontrib>Qi, Caiyun</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Yuting</au><au>Zhou, Junfeng</au><au>Rong, Xinqi</au><au>Du, Ming</au><au>Qi, Caiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computation of maximum weighted independent sets on weighted dynamic graph</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>80</volume><issue>8</issue><spage>10418</spage><epage>10443</epage><pages>10418-10443</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>An independent set is a set of vertices in a graph in which no two vertices are adjacent to each other. The maximum weighted independent set is the independent set with the largest sum of weights in a weighted graph. Considering that existing methods are inefficient when computing the maximum weighted independent set, we propose a combined neighbor reduction rule and a loss value-based greedy strategy to improve the efficiency and increase the weight of the independent set. Additionally, we propose the efficient approximate algorithms for the maximum weighted independent set on dynamic graphs. We decompose the weight change problem into five cases and propose corresponding strategies for each case. Finally, we conduct experiments on 8 real-world datasets to verify the effectiveness and efficiency of the proposed methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05841-9</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2024-05, Vol.80 (8), p.10418-10443
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3051510826
source SpringerLink Journals
subjects Algorithms
Apexes
Compilers
Computer Science
Graph theory
Interpreters
Processor Architectures
Programming Languages
title Efficient computation of maximum weighted independent sets on weighted dynamic graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computation%20of%20maximum%20weighted%20independent%20sets%20on%20weighted%20dynamic%20graph&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Tan,%20Yuting&rft.date=2024-05-01&rft.volume=80&rft.issue=8&rft.spage=10418&rft.epage=10443&rft.pages=10418-10443&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05841-9&rft_dat=%3Cproquest_cross%3E3051510826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051510826&rft_id=info:pmid/&rfr_iscdi=true