Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study
Selecting the appropriate production planning and control systems (PPCS) presents a significant challenge for many companies, as their performance, i.e., overall costs, depends on the production system environment. Key environmental characteristics include the system's structure, i.e., flow sho...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seiringer, Wolfgang Bokor, Balwin Altendorfer, Klaus |
description | Selecting the appropriate production planning and control systems (PPCS) presents a significant challenge for many companies, as their performance, i.e., overall costs, depends on the production system environment. Key environmental characteristics include the system's structure, i.e., flow shop, hybrid shop, or job shop, and the planned shop load. Besides selecting a suitable PPCS, its parameterization significantly influences the performance. This publication investigates the performance and the optimal parametrization of Material Requirement Planning (MRP), Reorder Point System (RPS), and Constant Work In Progress (ConWIP) at different stochastic multi-item multi-stage production system environments by conducting a comprehensive full factorial simulation study. The results indicate that MRP and ConWIP generally outperform RPS in all observed environments. Moreover, when comparing MRP with ConWIP, the performance clearly varies depending on the specific production system environment. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3051503709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051503709</sourcerecordid><originalsourceid>FETCH-proquest_journals_30515037093</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKOo_XHAtpInxtROtuCzUfQk2lUhyo3kU_Huj-AGuZpg5nAEZM86LxWbJ2IjMQrhTStlqzYTgY2LKXpoko8YbVN616Rq1Q6iMRPxsEls4OIzeGahfISobQCMcddcprzBCib32Dm3uYQf7DNuH9FnYK6i1TUZ-hXVM7WtKhp00Qc1-OSHzU3k5nBcP755JhdjcXfKYr4ZTUQjK13TL_6Pe5_hJ1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051503709</pqid></control><display><type>article</type><title>Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study</title><source>Freely Accessible Journals</source><creator>Seiringer, Wolfgang ; Bokor, Balwin ; Altendorfer, Klaus</creator><creatorcontrib>Seiringer, Wolfgang ; Bokor, Balwin ; Altendorfer, Klaus</creatorcontrib><description>Selecting the appropriate production planning and control systems (PPCS) presents a significant challenge for many companies, as their performance, i.e., overall costs, depends on the production system environment. Key environmental characteristics include the system's structure, i.e., flow shop, hybrid shop, or job shop, and the planned shop load. Besides selecting a suitable PPCS, its parameterization significantly influences the performance. This publication investigates the performance and the optimal parametrization of Material Requirement Planning (MRP), Reorder Point System (RPS), and Constant Work In Progress (ConWIP) at different stochastic multi-item multi-stage production system environments by conducting a comprehensive full factorial simulation study. The results indicate that MRP and ConWIP generally outperform RPS in all observed environments. Moreover, when comparing MRP with ConWIP, the performance clearly varies depending on the specific production system environment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Control systems ; Material requirements planning ; Parameterization ; Production planning ; Workflow</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Seiringer, Wolfgang</creatorcontrib><creatorcontrib>Bokor, Balwin</creatorcontrib><creatorcontrib>Altendorfer, Klaus</creatorcontrib><title>Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study</title><title>arXiv.org</title><description>Selecting the appropriate production planning and control systems (PPCS) presents a significant challenge for many companies, as their performance, i.e., overall costs, depends on the production system environment. Key environmental characteristics include the system's structure, i.e., flow shop, hybrid shop, or job shop, and the planned shop load. Besides selecting a suitable PPCS, its parameterization significantly influences the performance. This publication investigates the performance and the optimal parametrization of Material Requirement Planning (MRP), Reorder Point System (RPS), and Constant Work In Progress (ConWIP) at different stochastic multi-item multi-stage production system environments by conducting a comprehensive full factorial simulation study. The results indicate that MRP and ConWIP generally outperform RPS in all observed environments. Moreover, when comparing MRP with ConWIP, the performance clearly varies depending on the specific production system environment.</description><subject>Control systems</subject><subject>Material requirements planning</subject><subject>Parameterization</subject><subject>Production planning</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgKOo_XHAtpInxtROtuCzUfQk2lUhyo3kU_Huj-AGuZpg5nAEZM86LxWbJ2IjMQrhTStlqzYTgY2LKXpoko8YbVN616Rq1Q6iMRPxsEls4OIzeGahfISobQCMcddcprzBCib32Dm3uYQf7DNuH9FnYK6i1TUZ-hXVM7WtKhp00Qc1-OSHzU3k5nBcP755JhdjcXfKYr4ZTUQjK13TL_6Pe5_hJ1w</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Seiringer, Wolfgang</creator><creator>Bokor, Balwin</creator><creator>Altendorfer, Klaus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study</title><author>Seiringer, Wolfgang ; Bokor, Balwin ; Altendorfer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30515037093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Material requirements planning</topic><topic>Parameterization</topic><topic>Production planning</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Seiringer, Wolfgang</creatorcontrib><creatorcontrib>Bokor, Balwin</creatorcontrib><creatorcontrib>Altendorfer, Klaus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seiringer, Wolfgang</au><au>Bokor, Balwin</au><au>Altendorfer, Klaus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Selecting the appropriate production planning and control systems (PPCS) presents a significant challenge for many companies, as their performance, i.e., overall costs, depends on the production system environment. Key environmental characteristics include the system's structure, i.e., flow shop, hybrid shop, or job shop, and the planned shop load. Besides selecting a suitable PPCS, its parameterization significantly influences the performance. This publication investigates the performance and the optimal parametrization of Material Requirement Planning (MRP), Reorder Point System (RPS), and Constant Work In Progress (ConWIP) at different stochastic multi-item multi-stage production system environments by conducting a comprehensive full factorial simulation study. The results indicate that MRP and ConWIP generally outperform RPS in all observed environments. Moreover, when comparing MRP with ConWIP, the performance clearly varies depending on the specific production system environment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3051503709 |
source | Freely Accessible Journals |
subjects | Control systems Material requirements planning Parameterization Production planning Workflow |
title | Evaluating Production Planning and Control Systems in Different Environments: A Comparative Simulation Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evaluating%20Production%20Planning%20and%20Control%20Systems%20in%20Different%20Environments:%20A%20Comparative%20Simulation%20Study&rft.jtitle=arXiv.org&rft.au=Seiringer,%20Wolfgang&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3051503709%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051503709&rft_id=info:pmid/&rfr_iscdi=true |