The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon

The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2024-06, Vol.141 (23), p.n/a
Hauptverfasser: Li, Xianhua, Jiang, Fangxin, Zhang, Xue, Li, Peixun, Chen, Shangzhi, Sun, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Journal of applied polymer science
container_volume 141
creator Li, Xianhua
Jiang, Fangxin
Zhang, Xue
Li, Peixun
Chen, Shangzhi
Sun, Yue
description The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the curing process under conditions of 25, 35, 45, 55, and 65°C. The thermal performance and curing reaction are characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The mechanical properties with respect to the cure temperatures are characterized by compression strength tests. Experimental results present that after curing under conditions ranging from 25 to 65°C, the hardness of the samples reached its maximum values (85–90 D). As the temperature increased from 25 to 65°C, there was a greater degree of curing cross‐linking, resulting in an increase in compressive strength from 55 to 72 MPa. Based on Shore hardness–time experimental data, a logarithmic model is proposed for predicting the hardness of adhesives at any given time for engineering applications. Additionally, the time–temperature superposition principle is utilized to extrapolate the curing time of the adhesive under low‐temperature conditions. The research findings are of significant importance for the assessment of adhesive hardening. The caption is Retard‐bonded prestressed tendon structure diagram.
doi_str_mv 10.1002/app.55486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051412538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051412538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-476ac174188a206a1835f27efbddb6700e83058146052aaa901fe117b66a2e0e3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaWmJCa1k5jxx2rin9SJTqUObo6Z5IqcYLtgrqxsvGMPAmGsjKc7qTvd9-dPkIuORtzxtIJ9P1YiEzJIzLgbJYnmUzVMRlEjSdqNhOn5Mz7LWOcCyYH5GNdIUVjUAfaGap3rrbPNGDbo4Owc0g7SytwJdoojGio0LXQjCjYkraoK7C1hobGwYEO6Gofau1_vKCs0NevSE3nqMMQTb7ePzedLbGkvUMfYvk4B7RlZ8_JiYHG48VfH5Kn25v14j5ZPt49LObLRKcil0mWS9A8z7hSkDIJXE2FSXM0m7LcyJwxVFMmFM8kEykAzBg3yHm-kRJSZDgdkquDb--6l138oth2O2fjySIu8oynYqoidX2gtOu8d2iK3tUtuH3BWfGTdBGTLn6TjuzkwL7VDe7_B4v5anXY-AZLgYJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051412538</pqid></control><display><type>article</type><title>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon</title><source>Access via Wiley Online Library</source><creator>Li, Xianhua ; Jiang, Fangxin ; Zhang, Xue ; Li, Peixun ; Chen, Shangzhi ; Sun, Yue</creator><creatorcontrib>Li, Xianhua ; Jiang, Fangxin ; Zhang, Xue ; Li, Peixun ; Chen, Shangzhi ; Sun, Yue</creatorcontrib><description>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the curing process under conditions of 25, 35, 45, 55, and 65°C. The thermal performance and curing reaction are characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The mechanical properties with respect to the cure temperatures are characterized by compression strength tests. Experimental results present that after curing under conditions ranging from 25 to 65°C, the hardness of the samples reached its maximum values (85–90 D). As the temperature increased from 25 to 65°C, there was a greater degree of curing cross‐linking, resulting in an increase in compressive strength from 55 to 72 MPa. Based on Shore hardness–time experimental data, a logarithmic model is proposed for predicting the hardness of adhesives at any given time for engineering applications. Additionally, the time–temperature superposition principle is utilized to extrapolate the curing time of the adhesive under low‐temperature conditions. The research findings are of significant importance for the assessment of adhesive hardening. The caption is Retard‐bonded prestressed tendon structure diagram.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.55486</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>adhesive ; Adhesives ; Compression tests ; Compressive strength ; cone penetration and Shore hardness ; Curing ; Fourier transforms ; Hardening ; Hardness ; Mechanical properties ; prediction model ; retard‐bonded prestressed tendon ; Superposition (mathematics) ; Temperature</subject><ispartof>Journal of applied polymer science, 2024-06, Vol.141 (23), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-476ac174188a206a1835f27efbddb6700e83058146052aaa901fe117b66a2e0e3</cites><orcidid>0009-0004-9657-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.55486$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.55486$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Li, Xianhua</creatorcontrib><creatorcontrib>Jiang, Fangxin</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Li, Peixun</creatorcontrib><creatorcontrib>Chen, Shangzhi</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><title>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon</title><title>Journal of applied polymer science</title><description>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the curing process under conditions of 25, 35, 45, 55, and 65°C. The thermal performance and curing reaction are characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The mechanical properties with respect to the cure temperatures are characterized by compression strength tests. Experimental results present that after curing under conditions ranging from 25 to 65°C, the hardness of the samples reached its maximum values (85–90 D). As the temperature increased from 25 to 65°C, there was a greater degree of curing cross‐linking, resulting in an increase in compressive strength from 55 to 72 MPa. Based on Shore hardness–time experimental data, a logarithmic model is proposed for predicting the hardness of adhesives at any given time for engineering applications. Additionally, the time–temperature superposition principle is utilized to extrapolate the curing time of the adhesive under low‐temperature conditions. The research findings are of significant importance for the assessment of adhesive hardening. The caption is Retard‐bonded prestressed tendon structure diagram.</description><subject>adhesive</subject><subject>Adhesives</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>cone penetration and Shore hardness</subject><subject>Curing</subject><subject>Fourier transforms</subject><subject>Hardening</subject><subject>Hardness</subject><subject>Mechanical properties</subject><subject>prediction model</subject><subject>retard‐bonded prestressed tendon</subject><subject>Superposition (mathematics)</subject><subject>Temperature</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUw8AaWmJCa1k5jxx2rin9SJTqUObo6Z5IqcYLtgrqxsvGMPAmGsjKc7qTvd9-dPkIuORtzxtIJ9P1YiEzJIzLgbJYnmUzVMRlEjSdqNhOn5Mz7LWOcCyYH5GNdIUVjUAfaGap3rrbPNGDbo4Owc0g7SytwJdoojGio0LXQjCjYkraoK7C1hobGwYEO6Gofau1_vKCs0NevSE3nqMMQTb7ePzedLbGkvUMfYvk4B7RlZ8_JiYHG48VfH5Kn25v14j5ZPt49LObLRKcil0mWS9A8z7hSkDIJXE2FSXM0m7LcyJwxVFMmFM8kEykAzBg3yHm-kRJSZDgdkquDb--6l138oth2O2fjySIu8oynYqoidX2gtOu8d2iK3tUtuH3BWfGTdBGTLn6TjuzkwL7VDe7_B4v5anXY-AZLgYJo</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Li, Xianhua</creator><creator>Jiang, Fangxin</creator><creator>Zhang, Xue</creator><creator>Li, Peixun</creator><creator>Chen, Shangzhi</creator><creator>Sun, Yue</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0009-0004-9657-796X</orcidid></search><sort><creationdate>20240615</creationdate><title>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon</title><author>Li, Xianhua ; Jiang, Fangxin ; Zhang, Xue ; Li, Peixun ; Chen, Shangzhi ; Sun, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-476ac174188a206a1835f27efbddb6700e83058146052aaa901fe117b66a2e0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesive</topic><topic>Adhesives</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>cone penetration and Shore hardness</topic><topic>Curing</topic><topic>Fourier transforms</topic><topic>Hardening</topic><topic>Hardness</topic><topic>Mechanical properties</topic><topic>prediction model</topic><topic>retard‐bonded prestressed tendon</topic><topic>Superposition (mathematics)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianhua</creatorcontrib><creatorcontrib>Jiang, Fangxin</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Li, Peixun</creatorcontrib><creatorcontrib>Chen, Shangzhi</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianhua</au><au>Jiang, Fangxin</au><au>Zhang, Xue</au><au>Li, Peixun</au><au>Chen, Shangzhi</au><au>Sun, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-06-15</date><risdate>2024</risdate><volume>141</volume><issue>23</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the curing process under conditions of 25, 35, 45, 55, and 65°C. The thermal performance and curing reaction are characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The mechanical properties with respect to the cure temperatures are characterized by compression strength tests. Experimental results present that after curing under conditions ranging from 25 to 65°C, the hardness of the samples reached its maximum values (85–90 D). As the temperature increased from 25 to 65°C, there was a greater degree of curing cross‐linking, resulting in an increase in compressive strength from 55 to 72 MPa. Based on Shore hardness–time experimental data, a logarithmic model is proposed for predicting the hardness of adhesives at any given time for engineering applications. Additionally, the time–temperature superposition principle is utilized to extrapolate the curing time of the adhesive under low‐temperature conditions. The research findings are of significant importance for the assessment of adhesive hardening. The caption is Retard‐bonded prestressed tendon structure diagram.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.55486</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0004-9657-796X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2024-06, Vol.141 (23), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_3051412538
source Access via Wiley Online Library
subjects adhesive
Adhesives
Compression tests
Compressive strength
cone penetration and Shore hardness
Curing
Fourier transforms
Hardening
Hardness
Mechanical properties
prediction model
retard‐bonded prestressed tendon
Superposition (mathematics)
Temperature
title The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T09%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20curing%20temperature%20on%20hardening,%20thermal,%20and%20mechanical%20characteristics%20of%20adhesive%20for%20retard%E2%80%90bonded%20prestressed%20tendon&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Li,%20Xianhua&rft.date=2024-06-15&rft.volume=141&rft.issue=23&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.55486&rft_dat=%3Cproquest_cross%3E3051412538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051412538&rft_id=info:pmid/&rfr_iscdi=true