Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads
In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The en...
Gespeichert in:
Veröffentlicht in: | Archives of Civil and Mechanical Engineering 2024-05, Vol.24 (3), p.140, Article 140 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 140 |
container_title | Archives of Civil and Mechanical Engineering |
container_volume | 24 |
creator | Saoula, Abdelkader Benyamina, Abdelrahmane B. Meftah, Sid Ahmed Tounsi, Abdelouahed Alashker, Yasser Khedher, Khaled Mohamed |
description | In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams. |
doi_str_mv | 10.1007/s43452-024-00943-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051222546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051222546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGr_AU8BL3pYnSSzX0cp2hYqgh_nkN1k65bdpCa7Sv97t66gJ08zvHnvDfwIOWdwzQDSm4ACYx4BxwggRxHhEZlwyEQkBMuO_-ynZBbCFgAYpJwl8YS0Kxs6VdRN3e2pq-j94oF6U3bKbvpGefrmmsZ90jBItbP08mn5fEULo1pqGtMa29HeauNp6dqitkYPN6tru6HK6oO48yaE-sPQxikdzshJpZpgZj9zSl7v717my2j9uFjNb9dRyQG6yCAvUoY6zVWeM45oYiVKpbHKUSVJUTHIC-RVUmYQC81ZoRIWIyoel1muuZiSi7F35917b0Int673dngpBcSMcx5jMrj46Cq9C8GbSu583Sq_lwzkgawcycqBrPwmK3EIiTEUBrPdGP9b_U_qC8EHeyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051222546</pqid></control><display><type>article</type><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><source>Springer Nature - Complete Springer Journals</source><creator>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</creator><creatorcontrib>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</creatorcontrib><description>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</description><identifier>ISSN: 2083-3318</identifier><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1007/s43452-024-00943-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Axial forces ; Behavior ; Bending ; Box beams ; Civil Engineering ; Composite materials ; Deformation ; Elasticity ; Employment ; Engineering ; Equilibrium equations ; Finite element method ; Functionally gradient materials ; Heat resistance ; Hollow sections ; Influence ; Investigations ; Material properties ; Mechanical Engineering ; Original Article ; Power law ; Ritz method ; Stability analysis ; Stiffness matrix ; Structural Materials ; Thickness</subject><ispartof>Archives of Civil and Mechanical Engineering, 2024-05, Vol.24 (3), p.140, Article 140</ispartof><rights>Wroclaw University of Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</cites><orcidid>0000-0002-5601-3228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-024-00943-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s43452-024-00943-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Saoula, Abdelkader</creatorcontrib><creatorcontrib>Benyamina, Abdelrahmane B.</creatorcontrib><creatorcontrib>Meftah, Sid Ahmed</creatorcontrib><creatorcontrib>Tounsi, Abdelouahed</creatorcontrib><creatorcontrib>Alashker, Yasser</creatorcontrib><creatorcontrib>Khedher, Khaled Mohamed</creatorcontrib><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Arch. Civ. Mech. Eng</addtitle><description>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</description><subject>Axial forces</subject><subject>Behavior</subject><subject>Bending</subject><subject>Box beams</subject><subject>Civil Engineering</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Employment</subject><subject>Engineering</subject><subject>Equilibrium equations</subject><subject>Finite element method</subject><subject>Functionally gradient materials</subject><subject>Heat resistance</subject><subject>Hollow sections</subject><subject>Influence</subject><subject>Investigations</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Original Article</subject><subject>Power law</subject><subject>Ritz method</subject><subject>Stability analysis</subject><subject>Stiffness matrix</subject><subject>Structural Materials</subject><subject>Thickness</subject><issn>2083-3318</issn><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGr_AU8BL3pYnSSzX0cp2hYqgh_nkN1k65bdpCa7Sv97t66gJ08zvHnvDfwIOWdwzQDSm4ACYx4BxwggRxHhEZlwyEQkBMuO_-ynZBbCFgAYpJwl8YS0Kxs6VdRN3e2pq-j94oF6U3bKbvpGefrmmsZ90jBItbP08mn5fEULo1pqGtMa29HeauNp6dqitkYPN6tru6HK6oO48yaE-sPQxikdzshJpZpgZj9zSl7v717my2j9uFjNb9dRyQG6yCAvUoY6zVWeM45oYiVKpbHKUSVJUTHIC-RVUmYQC81ZoRIWIyoel1muuZiSi7F35917b0Int673dngpBcSMcx5jMrj46Cq9C8GbSu583Sq_lwzkgawcycqBrPwmK3EIiTEUBrPdGP9b_U_qC8EHeyA</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Saoula, Abdelkader</creator><creator>Benyamina, Abdelrahmane B.</creator><creator>Meftah, Sid Ahmed</creator><creator>Tounsi, Abdelouahed</creator><creator>Alashker, Yasser</creator><creator>Khedher, Khaled Mohamed</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5601-3228</orcidid></search><sort><creationdate>20240506</creationdate><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><author>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axial forces</topic><topic>Behavior</topic><topic>Bending</topic><topic>Box beams</topic><topic>Civil Engineering</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Employment</topic><topic>Engineering</topic><topic>Equilibrium equations</topic><topic>Finite element method</topic><topic>Functionally gradient materials</topic><topic>Heat resistance</topic><topic>Hollow sections</topic><topic>Influence</topic><topic>Investigations</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Original Article</topic><topic>Power law</topic><topic>Ritz method</topic><topic>Stability analysis</topic><topic>Stiffness matrix</topic><topic>Structural Materials</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saoula, Abdelkader</creatorcontrib><creatorcontrib>Benyamina, Abdelrahmane B.</creatorcontrib><creatorcontrib>Meftah, Sid Ahmed</creatorcontrib><creatorcontrib>Tounsi, Abdelouahed</creatorcontrib><creatorcontrib>Alashker, Yasser</creatorcontrib><creatorcontrib>Khedher, Khaled Mohamed</creatorcontrib><collection>CrossRef</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saoula, Abdelkader</au><au>Benyamina, Abdelrahmane B.</au><au>Meftah, Sid Ahmed</au><au>Tounsi, Abdelouahed</au><au>Alashker, Yasser</au><au>Khedher, Khaled Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Arch. Civ. Mech. Eng</stitle><date>2024-05-06</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>140</spage><pages>140-</pages><artnum>140</artnum><issn>2083-3318</issn><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-024-00943-4</doi><orcidid>https://orcid.org/0000-0002-5601-3228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2083-3318 |
ispartof | Archives of Civil and Mechanical Engineering, 2024-05, Vol.24 (3), p.140, Article 140 |
issn | 2083-3318 1644-9665 2083-3318 |
language | eng |
recordid | cdi_proquest_journals_3051222546 |
source | Springer Nature - Complete Springer Journals |
subjects | Axial forces Behavior Bending Box beams Civil Engineering Composite materials Deformation Elasticity Employment Engineering Equilibrium equations Finite element method Functionally gradient materials Heat resistance Hollow sections Influence Investigations Material properties Mechanical Engineering Original Article Power law Ritz method Stability analysis Stiffness matrix Structural Materials Thickness |
title | Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20FGM%20rectangular%20hollow%20section%20(RHS)%20beam%20element%20under%20combined%20bending%20and%20compressive%20loads&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Saoula,%20Abdelkader&rft.date=2024-05-06&rft.volume=24&rft.issue=3&rft.spage=140&rft.pages=140-&rft.artnum=140&rft.issn=2083-3318&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-024-00943-4&rft_dat=%3Cproquest_cross%3E3051222546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051222546&rft_id=info:pmid/&rfr_iscdi=true |