Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads

In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of Civil and Mechanical Engineering 2024-05, Vol.24 (3), p.140, Article 140
Hauptverfasser: Saoula, Abdelkader, Benyamina, Abdelrahmane B., Meftah, Sid Ahmed, Tounsi, Abdelouahed, Alashker, Yasser, Khedher, Khaled Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 140
container_title Archives of Civil and Mechanical Engineering
container_volume 24
creator Saoula, Abdelkader
Benyamina, Abdelrahmane B.
Meftah, Sid Ahmed
Tounsi, Abdelouahed
Alashker, Yasser
Khedher, Khaled Mohamed
description In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.
doi_str_mv 10.1007/s43452-024-00943-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051222546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051222546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGr_AU8BL3pYnSSzX0cp2hYqgh_nkN1k65bdpCa7Sv97t66gJ08zvHnvDfwIOWdwzQDSm4ACYx4BxwggRxHhEZlwyEQkBMuO_-ynZBbCFgAYpJwl8YS0Kxs6VdRN3e2pq-j94oF6U3bKbvpGefrmmsZ90jBItbP08mn5fEULo1pqGtMa29HeauNp6dqitkYPN6tru6HK6oO48yaE-sPQxikdzshJpZpgZj9zSl7v717my2j9uFjNb9dRyQG6yCAvUoY6zVWeM45oYiVKpbHKUSVJUTHIC-RVUmYQC81ZoRIWIyoel1muuZiSi7F35917b0Int673dngpBcSMcx5jMrj46Cq9C8GbSu583Sq_lwzkgawcycqBrPwmK3EIiTEUBrPdGP9b_U_qC8EHeyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051222546</pqid></control><display><type>article</type><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><source>Springer Nature - Complete Springer Journals</source><creator>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</creator><creatorcontrib>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</creatorcontrib><description>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</description><identifier>ISSN: 2083-3318</identifier><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1007/s43452-024-00943-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Axial forces ; Behavior ; Bending ; Box beams ; Civil Engineering ; Composite materials ; Deformation ; Elasticity ; Employment ; Engineering ; Equilibrium equations ; Finite element method ; Functionally gradient materials ; Heat resistance ; Hollow sections ; Influence ; Investigations ; Material properties ; Mechanical Engineering ; Original Article ; Power law ; Ritz method ; Stability analysis ; Stiffness matrix ; Structural Materials ; Thickness</subject><ispartof>Archives of Civil and Mechanical Engineering, 2024-05, Vol.24 (3), p.140, Article 140</ispartof><rights>Wroclaw University of Science and Technology 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</cites><orcidid>0000-0002-5601-3228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-024-00943-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s43452-024-00943-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Saoula, Abdelkader</creatorcontrib><creatorcontrib>Benyamina, Abdelrahmane B.</creatorcontrib><creatorcontrib>Meftah, Sid Ahmed</creatorcontrib><creatorcontrib>Tounsi, Abdelouahed</creatorcontrib><creatorcontrib>Alashker, Yasser</creatorcontrib><creatorcontrib>Khedher, Khaled Mohamed</creatorcontrib><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Arch. Civ. Mech. Eng</addtitle><description>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</description><subject>Axial forces</subject><subject>Behavior</subject><subject>Bending</subject><subject>Box beams</subject><subject>Civil Engineering</subject><subject>Composite materials</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Employment</subject><subject>Engineering</subject><subject>Equilibrium equations</subject><subject>Finite element method</subject><subject>Functionally gradient materials</subject><subject>Heat resistance</subject><subject>Hollow sections</subject><subject>Influence</subject><subject>Investigations</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Original Article</subject><subject>Power law</subject><subject>Ritz method</subject><subject>Stability analysis</subject><subject>Stiffness matrix</subject><subject>Structural Materials</subject><subject>Thickness</subject><issn>2083-3318</issn><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGr_AU8BL3pYnSSzX0cp2hYqgh_nkN1k65bdpCa7Sv97t66gJ08zvHnvDfwIOWdwzQDSm4ACYx4BxwggRxHhEZlwyEQkBMuO_-ynZBbCFgAYpJwl8YS0Kxs6VdRN3e2pq-j94oF6U3bKbvpGefrmmsZ90jBItbP08mn5fEULo1pqGtMa29HeauNp6dqitkYPN6tru6HK6oO48yaE-sPQxikdzshJpZpgZj9zSl7v717my2j9uFjNb9dRyQG6yCAvUoY6zVWeM45oYiVKpbHKUSVJUTHIC-RVUmYQC81ZoRIWIyoel1muuZiSi7F35917b0Int673dngpBcSMcx5jMrj46Cq9C8GbSu583Sq_lwzkgawcycqBrPwmK3EIiTEUBrPdGP9b_U_qC8EHeyA</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Saoula, Abdelkader</creator><creator>Benyamina, Abdelrahmane B.</creator><creator>Meftah, Sid Ahmed</creator><creator>Tounsi, Abdelouahed</creator><creator>Alashker, Yasser</creator><creator>Khedher, Khaled Mohamed</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5601-3228</orcidid></search><sort><creationdate>20240506</creationdate><title>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</title><author>Saoula, Abdelkader ; Benyamina, Abdelrahmane B. ; Meftah, Sid Ahmed ; Tounsi, Abdelouahed ; Alashker, Yasser ; Khedher, Khaled Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e42b714d79a991244e5a3cad4f94a66bf109b42f6c8053d21ba61544a25c89d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Axial forces</topic><topic>Behavior</topic><topic>Bending</topic><topic>Box beams</topic><topic>Civil Engineering</topic><topic>Composite materials</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Employment</topic><topic>Engineering</topic><topic>Equilibrium equations</topic><topic>Finite element method</topic><topic>Functionally gradient materials</topic><topic>Heat resistance</topic><topic>Hollow sections</topic><topic>Influence</topic><topic>Investigations</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Original Article</topic><topic>Power law</topic><topic>Ritz method</topic><topic>Stability analysis</topic><topic>Stiffness matrix</topic><topic>Structural Materials</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saoula, Abdelkader</creatorcontrib><creatorcontrib>Benyamina, Abdelrahmane B.</creatorcontrib><creatorcontrib>Meftah, Sid Ahmed</creatorcontrib><creatorcontrib>Tounsi, Abdelouahed</creatorcontrib><creatorcontrib>Alashker, Yasser</creatorcontrib><creatorcontrib>Khedher, Khaled Mohamed</creatorcontrib><collection>CrossRef</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saoula, Abdelkader</au><au>Benyamina, Abdelrahmane B.</au><au>Meftah, Sid Ahmed</au><au>Tounsi, Abdelouahed</au><au>Alashker, Yasser</au><au>Khedher, Khaled Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Arch. Civ. Mech. Eng</stitle><date>2024-05-06</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>140</spage><pages>140-</pages><artnum>140</artnum><issn>2083-3318</issn><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>In this paper, stability analysis of thin-walled functionally graded (FG) sandwich box beams under combined bending and axial forces was carried out. Based on higher order theory that includes sectional distortion and warping, a nonlinear displacement field of closed cross-section is adopted. The energy principle is applied in the context of elastic behavior of materials. Simple power-law is used to adjust the material properties in the thickness direction of each wall of FGM box beam. Ritz's method is adopted to obtain the nonlinear coupled equilibrium equations, and then the critical loads are obtained by means of the corresponding tangent stiffness matrix. A Finite Element simulation performed with the code ABAQUS software is used to verify the efficiency and accuracy of the present approach in lateral torsional buckling predictions. The effects of the power-law index and skin–core-skin thickness ratios on the critical loads of FG sandwich box beams are presented through several case studies. Moreover, the numerical solutions show that the previous effects play a significant role in the stability analysis of FG sandwich box beams.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-024-00943-4</doi><orcidid>https://orcid.org/0000-0002-5601-3228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2083-3318
ispartof Archives of Civil and Mechanical Engineering, 2024-05, Vol.24 (3), p.140, Article 140
issn 2083-3318
1644-9665
2083-3318
language eng
recordid cdi_proquest_journals_3051222546
source Springer Nature - Complete Springer Journals
subjects Axial forces
Behavior
Bending
Box beams
Civil Engineering
Composite materials
Deformation
Elasticity
Employment
Engineering
Equilibrium equations
Finite element method
Functionally gradient materials
Heat resistance
Hollow sections
Influence
Investigations
Material properties
Mechanical Engineering
Original Article
Power law
Ritz method
Stability analysis
Stiffness matrix
Structural Materials
Thickness
title Instability of FGM rectangular hollow section (RHS) beam element under combined bending and compressive loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20of%20FGM%20rectangular%20hollow%20section%20(RHS)%20beam%20element%20under%20combined%20bending%20and%20compressive%20loads&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Saoula,%20Abdelkader&rft.date=2024-05-06&rft.volume=24&rft.issue=3&rft.spage=140&rft.pages=140-&rft.artnum=140&rft.issn=2083-3318&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-024-00943-4&rft_dat=%3Cproquest_cross%3E3051222546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051222546&rft_id=info:pmid/&rfr_iscdi=true