Compact difference schemes for moisture transfer equations

The construction of stable and economical numerical algorithms of high accuracy is a relevant issue in the modern theory of numerical methods. Such algorithms appear when solving initial boundary value problems for linear and nonlinear nonstationary equations. In this article, results are obtained o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Utebaev, Dauletbay, Utebaev, Bakhadir, Tleuov, Kuwatbay
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3147
creator Utebaev, Dauletbay
Utebaev, Bakhadir
Tleuov, Kuwatbay
description The construction of stable and economical numerical algorithms of high accuracy is a relevant issue in the modern theory of numerical methods. Such algorithms appear when solving initial boundary value problems for linear and nonlinear nonstationary equations. In this article, results are obtained on the construction and study of difference schemes of high accuracy (compact difference schemes) based on finite difference and finite element methods for the nonstationary generalized Aller-Lykov equation. By developing the apparatus of the theory of stability of difference schemes, a priori estimates for the error in the class of smooth solutions of the original differential problem are obtained. By using this estimate, it is possible to prove the convergence of the constructed algorithm with a fourth-order velocity in time and space variables. An algorithm for implementing the constructed scheme is proposed.
doi_str_mv 10.1063/5.0210520
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3051103818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051103818</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-5e201631c942cc6584824b3c4e242aec97478e1e9db32fe8970a602ac28211e43</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13juPTNxJ8AUFNwruhun0BlPMozPJwn9vtV2dzcc5h0-Ia4QlgpF3egmEoAlORIZaY1EaNKciA6hUQUp-nouLlLYAVJWlzcR9PXSjD1O-aZuGI_eB8xS-uOOUN0PMu6FN0xw5n6Lv057IeTf7qR36dCnOGv-d-OqYC_Hx9PhevxSrt-fX-mFVjGgsFJoJ0EgMlaIQjLbKklrLoJgUeQ5VqUrLyNVmLalhW5XgDZAPZAmRlVyIm0PvGIfdzGly22GO_X7SSdCIIC3aPXV7oFJop_-Dboxt5-OPQ3B_bpx2RzfyFyjQVHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3051103818</pqid></control><display><type>conference_proceeding</type><title>Compact difference schemes for moisture transfer equations</title><source>AIP Journals Complete</source><creator>Utebaev, Dauletbay ; Utebaev, Bakhadir ; Tleuov, Kuwatbay</creator><contributor>Uteuliev, Niyetbay ; Khuzhayorov, Bakhtiyor ; Fayziev, Bekzodjon</contributor><creatorcontrib>Utebaev, Dauletbay ; Utebaev, Bakhadir ; Tleuov, Kuwatbay ; Uteuliev, Niyetbay ; Khuzhayorov, Bakhtiyor ; Fayziev, Bekzodjon</creatorcontrib><description>The construction of stable and economical numerical algorithms of high accuracy is a relevant issue in the modern theory of numerical methods. Such algorithms appear when solving initial boundary value problems for linear and nonlinear nonstationary equations. In this article, results are obtained on the construction and study of difference schemes of high accuracy (compact difference schemes) based on finite difference and finite element methods for the nonstationary generalized Aller-Lykov equation. By developing the apparatus of the theory of stability of difference schemes, a priori estimates for the error in the class of smooth solutions of the original differential problem are obtained. By using this estimate, it is possible to prove the convergence of the constructed algorithm with a fourth-order velocity in time and space variables. An algorithm for implementing the constructed scheme is proposed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0210520</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Boundary value problems ; Finite element method ; Numerical methods</subject><ispartof>AIP conference proceedings, 2024, Vol.3147 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0210520$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Uteuliev, Niyetbay</contributor><contributor>Khuzhayorov, Bakhtiyor</contributor><contributor>Fayziev, Bekzodjon</contributor><creatorcontrib>Utebaev, Dauletbay</creatorcontrib><creatorcontrib>Utebaev, Bakhadir</creatorcontrib><creatorcontrib>Tleuov, Kuwatbay</creatorcontrib><title>Compact difference schemes for moisture transfer equations</title><title>AIP conference proceedings</title><description>The construction of stable and economical numerical algorithms of high accuracy is a relevant issue in the modern theory of numerical methods. Such algorithms appear when solving initial boundary value problems for linear and nonlinear nonstationary equations. In this article, results are obtained on the construction and study of difference schemes of high accuracy (compact difference schemes) based on finite difference and finite element methods for the nonstationary generalized Aller-Lykov equation. By developing the apparatus of the theory of stability of difference schemes, a priori estimates for the error in the class of smooth solutions of the original differential problem are obtained. By using this estimate, it is possible to prove the convergence of the constructed algorithm with a fourth-order velocity in time and space variables. An algorithm for implementing the constructed scheme is proposed.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Finite element method</subject><subject>Numerical methods</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLw0AUhQdRMFYX_oOAOyH13juPTNxJ8AUFNwruhun0BlPMozPJwn9vtV2dzcc5h0-Ia4QlgpF3egmEoAlORIZaY1EaNKciA6hUQUp-nouLlLYAVJWlzcR9PXSjD1O-aZuGI_eB8xS-uOOUN0PMu6FN0xw5n6Lv057IeTf7qR36dCnOGv-d-OqYC_Hx9PhevxSrt-fX-mFVjGgsFJoJ0EgMlaIQjLbKklrLoJgUeQ5VqUrLyNVmLalhW5XgDZAPZAmRlVyIm0PvGIfdzGly22GO_X7SSdCIIC3aPXV7oFJop_-Dboxt5-OPQ3B_bpx2RzfyFyjQVHU</recordid><startdate>20240506</startdate><enddate>20240506</enddate><creator>Utebaev, Dauletbay</creator><creator>Utebaev, Bakhadir</creator><creator>Tleuov, Kuwatbay</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240506</creationdate><title>Compact difference schemes for moisture transfer equations</title><author>Utebaev, Dauletbay ; Utebaev, Bakhadir ; Tleuov, Kuwatbay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-5e201631c942cc6584824b3c4e242aec97478e1e9db32fe8970a602ac28211e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Finite element method</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utebaev, Dauletbay</creatorcontrib><creatorcontrib>Utebaev, Bakhadir</creatorcontrib><creatorcontrib>Tleuov, Kuwatbay</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utebaev, Dauletbay</au><au>Utebaev, Bakhadir</au><au>Tleuov, Kuwatbay</au><au>Uteuliev, Niyetbay</au><au>Khuzhayorov, Bakhtiyor</au><au>Fayziev, Bekzodjon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compact difference schemes for moisture transfer equations</atitle><btitle>AIP conference proceedings</btitle><date>2024-05-06</date><risdate>2024</risdate><volume>3147</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The construction of stable and economical numerical algorithms of high accuracy is a relevant issue in the modern theory of numerical methods. Such algorithms appear when solving initial boundary value problems for linear and nonlinear nonstationary equations. In this article, results are obtained on the construction and study of difference schemes of high accuracy (compact difference schemes) based on finite difference and finite element methods for the nonstationary generalized Aller-Lykov equation. By developing the apparatus of the theory of stability of difference schemes, a priori estimates for the error in the class of smooth solutions of the original differential problem are obtained. By using this estimate, it is possible to prove the convergence of the constructed algorithm with a fourth-order velocity in time and space variables. An algorithm for implementing the constructed scheme is proposed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0210520</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3147 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3051103818
source AIP Journals Complete
subjects Algorithms
Boundary value problems
Finite element method
Numerical methods
title Compact difference schemes for moisture transfer equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compact%20difference%20schemes%20for%20moisture%20transfer%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Utebaev,%20Dauletbay&rft.date=2024-05-06&rft.volume=3147&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0210520&rft_dat=%3Cproquest_scita%3E3051103818%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051103818&rft_id=info:pmid/&rfr_iscdi=true