Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis

We report the discovery and biosynthesis of new piperazine alkaloids‐arizonamides, and their derived compounds‐arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non‐heme iron enzymes, ParF and ParG, for core s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-05, Vol.136 (20), p.n/a
Hauptverfasser: Pham, Mai‐Truc, Yang, Feng‐Ling, Liu, I‐Chen, Liang, Po‐Huang, Lin, Hsiao‐Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Pham, Mai‐Truc
Yang, Feng‐Ling
Liu, I‐Chen
Liang, Po‐Huang
Lin, Hsiao‐Ching
description We report the discovery and biosynthesis of new piperazine alkaloids‐arizonamides, and their derived compounds‐arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non‐heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3‐alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG. The biosynthesis of newly identified alkaloids featuring unique heterobicyclic and spirocyclic isoquinolone skeletons, arizonamides and arizolidines, has been characterized. Notably, the non‐heme iron enzyme ParG demonstrated catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. This study has elucidated efficient strategies used by Nature to construct complex multicyclic heterocycle scaffolds.
doi_str_mv 10.1002/ange.202401324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3051077353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3051077353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1574-be07d42f305425f24d323c6b367d14d735dad2d34fc25406c2fc0b5c752e15c13</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU_Pb2GUt_YNSBXU9pMkdTZ0mNZki040-gs_okzilRZeuLpd7zncPB6FLSjqUEHat_TN0GGGCUM7EEWpRyWjGlVTHqEWIENkNE71TdJbSkhDSZarXQh_z4L8_vyawAjyNweOh39YrSHigK13WW8ATqCCGhTO1KZ3B2lv8sHYxHPZpCm8b50MZPOBBiIBHIa505RqW8_jerSHqrWuO_fJVl8FZfOtCqn31Asmlc3RS6DLBxWG20dNo-DiYZLO78XTQn2WGSiWyBRBlBSs4kYLJggnLGTfdBe8qS4VVXFptmeWiMEwK0jWsMGQhjZIMqDSUt9HVnruOTV5IVb4Mm-ibl3nDpEQ1CN6oOnuViSGlCEW-jm6lY51Tku9Kzncl578lN4be3vDuSqj_Uef9-Xj45_0BcpmDOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051077353</pqid></control><display><type>article</type><title>Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pham, Mai‐Truc ; Yang, Feng‐Ling ; Liu, I‐Chen ; Liang, Po‐Huang ; Lin, Hsiao‐Ching</creator><creatorcontrib>Pham, Mai‐Truc ; Yang, Feng‐Ling ; Liu, I‐Chen ; Liang, Po‐Huang ; Lin, Hsiao‐Ching</creatorcontrib><description>We report the discovery and biosynthesis of new piperazine alkaloids‐arizonamides, and their derived compounds‐arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non‐heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3‐alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG. The biosynthesis of newly identified alkaloids featuring unique heterobicyclic and spirocyclic isoquinolone skeletons, arizonamides and arizolidines, has been characterized. Notably, the non‐heme iron enzyme ParG demonstrated catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. This study has elucidated efficient strategies used by Nature to construct complex multicyclic heterocycle scaffolds.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202401324</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alkaloids ; Amino acids ; Biosynthesis ; Enzymes ; Heme ; Iron ; natural products ; non-heme iron-dependent oxygenases ; Piperazine ; Substrates</subject><ispartof>Angewandte Chemie, 2024-05, Vol.136 (20), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1574-be07d42f305425f24d323c6b367d14d735dad2d34fc25406c2fc0b5c752e15c13</cites><orcidid>0000-0001-8229-314X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202401324$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202401324$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Pham, Mai‐Truc</creatorcontrib><creatorcontrib>Yang, Feng‐Ling</creatorcontrib><creatorcontrib>Liu, I‐Chen</creatorcontrib><creatorcontrib>Liang, Po‐Huang</creatorcontrib><creatorcontrib>Lin, Hsiao‐Ching</creatorcontrib><title>Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis</title><title>Angewandte Chemie</title><description>We report the discovery and biosynthesis of new piperazine alkaloids‐arizonamides, and their derived compounds‐arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non‐heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3‐alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG. The biosynthesis of newly identified alkaloids featuring unique heterobicyclic and spirocyclic isoquinolone skeletons, arizonamides and arizolidines, has been characterized. Notably, the non‐heme iron enzyme ParG demonstrated catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. This study has elucidated efficient strategies used by Nature to construct complex multicyclic heterocycle scaffolds.</description><subject>Alkaloids</subject><subject>Amino acids</subject><subject>Biosynthesis</subject><subject>Enzymes</subject><subject>Heme</subject><subject>Iron</subject><subject>natural products</subject><subject>non-heme iron-dependent oxygenases</subject><subject>Piperazine</subject><subject>Substrates</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU_Pb2GUt_YNSBXU9pMkdTZ0mNZki040-gs_okzilRZeuLpd7zncPB6FLSjqUEHat_TN0GGGCUM7EEWpRyWjGlVTHqEWIENkNE71TdJbSkhDSZarXQh_z4L8_vyawAjyNweOh39YrSHigK13WW8ATqCCGhTO1KZ3B2lv8sHYxHPZpCm8b50MZPOBBiIBHIa505RqW8_jerSHqrWuO_fJVl8FZfOtCqn31Asmlc3RS6DLBxWG20dNo-DiYZLO78XTQn2WGSiWyBRBlBSs4kYLJggnLGTfdBe8qS4VVXFptmeWiMEwK0jWsMGQhjZIMqDSUt9HVnruOTV5IVb4Mm-ibl3nDpEQ1CN6oOnuViSGlCEW-jm6lY51Tku9Kzncl578lN4be3vDuSqj_Uef9-Xj45_0BcpmDOQ</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Pham, Mai‐Truc</creator><creator>Yang, Feng‐Ling</creator><creator>Liu, I‐Chen</creator><creator>Liang, Po‐Huang</creator><creator>Lin, Hsiao‐Ching</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8229-314X</orcidid></search><sort><creationdate>20240513</creationdate><title>Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis</title><author>Pham, Mai‐Truc ; Yang, Feng‐Ling ; Liu, I‐Chen ; Liang, Po‐Huang ; Lin, Hsiao‐Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1574-be07d42f305425f24d323c6b367d14d735dad2d34fc25406c2fc0b5c752e15c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkaloids</topic><topic>Amino acids</topic><topic>Biosynthesis</topic><topic>Enzymes</topic><topic>Heme</topic><topic>Iron</topic><topic>natural products</topic><topic>non-heme iron-dependent oxygenases</topic><topic>Piperazine</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Mai‐Truc</creatorcontrib><creatorcontrib>Yang, Feng‐Ling</creatorcontrib><creatorcontrib>Liu, I‐Chen</creatorcontrib><creatorcontrib>Liang, Po‐Huang</creatorcontrib><creatorcontrib>Lin, Hsiao‐Ching</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Mai‐Truc</au><au>Yang, Feng‐Ling</au><au>Liu, I‐Chen</au><au>Liang, Po‐Huang</au><au>Lin, Hsiao‐Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-05-13</date><risdate>2024</risdate><volume>136</volume><issue>20</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>We report the discovery and biosynthesis of new piperazine alkaloids‐arizonamides, and their derived compounds‐arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non‐heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3‐alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG. The biosynthesis of newly identified alkaloids featuring unique heterobicyclic and spirocyclic isoquinolone skeletons, arizonamides and arizolidines, has been characterized. Notably, the non‐heme iron enzyme ParG demonstrated catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. This study has elucidated efficient strategies used by Nature to construct complex multicyclic heterocycle scaffolds.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202401324</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8229-314X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-05, Vol.136 (20), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3051077353
source Wiley Online Library Journals Frontfile Complete
subjects Alkaloids
Amino acids
Biosynthesis
Enzymes
Heme
Iron
natural products
non-heme iron-dependent oxygenases
Piperazine
Substrates
title Non‐Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Heme%20Iron%20Enzymes%20Catalyze%20Heterobicyclic%20and%20Spirocyclic%20Isoquinolone%20Core%20Formation%20in%20Piperazine%20Alkaloid%20Biosynthesis&rft.jtitle=Angewandte%20Chemie&rft.au=Pham,%20Mai%E2%80%90Truc&rft.date=2024-05-13&rft.volume=136&rft.issue=20&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202401324&rft_dat=%3Cproquest_cross%3E3051077353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3051077353&rft_id=info:pmid/&rfr_iscdi=true