Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients
We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2024-06, Vol.48 (8), p.2179-2206 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2206 |
---|---|
container_issue | 8 |
container_start_page | 2179 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 48 |
creator | Adamus, Filip P. Healy, David Meredith, Philip G. Mitchell, Thomas M. Stanton‐Yonge, Ashley |
description | We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material. |
doi_str_mv | 10.1002/nag.3727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050932108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050932108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpSDxCJBaWFF-aOGarKihIBRZYsVxfkKtgB9sRZOMReEaeBIeyMp3h_3SOzg_AKYIzBCG-cOJlRiime2CCIKtL1lRkH0wgqUnJYI0OwVGMWwhhldMJeL7r22S_P786H3wfC_2RtIvWu8KbQjgbfQq-s7IYc92KmKy0abgslt5F31ol0oiFU0XIcdKqkF4bk5V2KR6DAyPaqE_-5hQ8XV89Lm_K9cPqdrlYl5JgSktBpJBaSlbNGTLaqJphjJXSTONm0whCzHwua1VRihSpIaZYYGOMgghuyIaRKTjb7e2Cf-t1THzr--DySU7GTwlGsMnqfKdk8DEGbXgX7KsIA0eQj-3x3B4f28u03NF32-rhX8fvF6tf_wM2b3PH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050932108</pqid></control><display><type>article</type><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</creator><creatorcontrib>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</creatorcontrib><description>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3727</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Coefficients ; Consolidation ; Deformation ; Fractures ; multiple‐permeability ; multiple‐porosity ; Pore pressure ; Poroelasticity ; Porosity ; rock mechanics</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2024-06, Vol.48 (8), p.2179-2206</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</citedby><cites>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</cites><orcidid>0000-0002-4361-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3727$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3727$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Adamus, Filip P.</creatorcontrib><creatorcontrib>Healy, David</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Mitchell, Thomas M.</creatorcontrib><creatorcontrib>Stanton‐Yonge, Ashley</creatorcontrib><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><title>International journal for numerical and analytical methods in geomechanics</title><description>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</description><subject>Anisotropy</subject><subject>Coefficients</subject><subject>Consolidation</subject><subject>Deformation</subject><subject>Fractures</subject><subject>multiple‐permeability</subject><subject>multiple‐porosity</subject><subject>Pore pressure</subject><subject>Poroelasticity</subject><subject>Porosity</subject><subject>rock mechanics</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10LtOwzAUBmALgUQpSDxCJBaWFF-aOGarKihIBRZYsVxfkKtgB9sRZOMReEaeBIeyMp3h_3SOzg_AKYIzBCG-cOJlRiime2CCIKtL1lRkH0wgqUnJYI0OwVGMWwhhldMJeL7r22S_P786H3wfC_2RtIvWu8KbQjgbfQq-s7IYc92KmKy0abgslt5F31ol0oiFU0XIcdKqkF4bk5V2KR6DAyPaqE_-5hQ8XV89Lm_K9cPqdrlYl5JgSktBpJBaSlbNGTLaqJphjJXSTONm0whCzHwua1VRihSpIaZYYGOMgghuyIaRKTjb7e2Cf-t1THzr--DySU7GTwlGsMnqfKdk8DEGbXgX7KsIA0eQj-3x3B4f28u03NF32-rhX8fvF6tf_wM2b3PH</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Adamus, Filip P.</creator><creator>Healy, David</creator><creator>Meredith, Philip G.</creator><creator>Mitchell, Thomas M.</creator><creator>Stanton‐Yonge, Ashley</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4361-4104</orcidid></search><sort><creationdate>20240601</creationdate><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><author>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Coefficients</topic><topic>Consolidation</topic><topic>Deformation</topic><topic>Fractures</topic><topic>multiple‐permeability</topic><topic>multiple‐porosity</topic><topic>Pore pressure</topic><topic>Poroelasticity</topic><topic>Porosity</topic><topic>rock mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamus, Filip P.</creatorcontrib><creatorcontrib>Healy, David</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Mitchell, Thomas M.</creatorcontrib><creatorcontrib>Stanton‐Yonge, Ashley</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamus, Filip P.</au><au>Healy, David</au><au>Meredith, Philip G.</au><au>Mitchell, Thomas M.</au><au>Stanton‐Yonge, Ashley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>48</volume><issue>8</issue><spage>2179</spage><epage>2206</epage><pages>2179-2206</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3727</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4361-4104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2024-06, Vol.48 (8), p.2179-2206 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_3050932108 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Coefficients Consolidation Deformation Fractures multiple‐permeability multiple‐porosity Pore pressure Poroelasticity Porosity rock mechanics |
title | Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90porous%20extension%20of%20anisotropic%20poroelasticity:%20Consolidation%20and%20related%20coefficients&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Adamus,%20Filip%20P.&rft.date=2024-06-01&rft.volume=48&rft.issue=8&rft.spage=2179&rft.epage=2206&rft.pages=2179-2206&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3727&rft_dat=%3Cproquest_cross%3E3050932108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050932108&rft_id=info:pmid/&rfr_iscdi=true |