A Generalization of the Isosceles Constant in Banach Spaces
N. Gastinel and J.L. Joly defined the rectangular constant μ in Banach spaces using the notion of orthogonality according to Birkhoff and its generalization μ p , with p ≥ 1 . Recently, M. Baronti, E. Casini, and P.L. Papini defined a new constant, the isosceles constant H , in Banach spaces in a ve...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2024-05, Vol.21 (3), Article 113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | N. Gastinel and J.L. Joly defined the rectangular constant
μ
in Banach spaces using the notion of orthogonality according to Birkhoff and its generalization
μ
p
, with
p
≥
1
. Recently, M. Baronti, E. Casini, and P.L. Papini defined a new constant, the isosceles constant
H
, in Banach spaces in a very similar way to the rectangular constant, but in this case using the isosceles orthogonality defined by James. In this paper, first of all, we generalize such constant, by defining a new constant
H
p
that generalizes the isosceles constant
H
as well
μ
p
generalizes
μ
. After that, we explain its properties, and we give a characterization of Hilbert spaces in terms of it. Moreover a partial characterization of uniformly non-square spaces is given. We conclude by a conjecture about the characterization of uniformly non-square spaces. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-024-02654-9 |