Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory
To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2‐TZVP level and the PBE0‐D3/def2‐TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searc...
Gespeichert in:
Veröffentlicht in: | International journal of quantum chemistry 2024-05, Vol.124 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | International journal of quantum chemistry |
container_volume | 124 |
creator | Jiang, Jing Shi, Shunping Zhao, Xiaofeng Duan, Zhanjiang Hu, Jiabao Tang, Leilei Yang, Ruixiao Yang, Jing |
description | To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2‐TZVP level and the PBE0‐D3/def2‐TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mgn@H2O (n = 4–8) complexes and MgnO (n = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg4 cluster and H2O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.
We catalyzed water molecules using Mgn (n = 4–8) clusters to produce hydrogen gas. The Mg8 cluster exhibits the best hydrogen evolution effect, as can be seen by comparing the energy barrier diagram, and the hydrogen molecules are fully precipitated, as can be shown by examining the IRI diagram. |
doi_str_mv | 10.1002/qua.27383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3050644329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050644329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2233-a8416b62977b52cbe24d561884cc157f437fc50b5306cccd1663ff1939264eba3</originalsourceid><addsrcrecordid>eNotUD1PwzAQtRBIlMLAP7DEAkNaf8VOBoaq4qNSEUKiElvkOE7qKiSt7RRl6wgz_7C_hKRlON3p7r13dw-Aa4xGGCEy3jRyRASN6AkYYBSLgHH8cQoG3QwFgqPoHFw4t0IIccrFAHzPqq123hTSm6qAfqmhkl6WrTcKSuXN1vgW1jl8KSp4W-13P_ddsP3uN7qDqmyc19bBvLYH6rLNbF3oCuptXTbe1BW0ulfpisb1CzJduV4xb6pDW5Y9sbbtJTjLZen01X8egsXjw_v0OZi_Ps2mk3mwJoTSQEYM85STWIg0JCrVhGUhx1HElMKhyBkVuQpRGlLElVIZ5pzmOY5pTDjTqaRDcHPUXdt603SvJ6u6sd0dLqEoRJwxSuIONT6ivkyp22Rtzae0bYJR0rucdC4nB5eTt8XkUNA_hwp2RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050644329</pqid></control><display><type>article</type><title>Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Jing ; Shi, Shunping ; Zhao, Xiaofeng ; Duan, Zhanjiang ; Hu, Jiabao ; Tang, Leilei ; Yang, Ruixiao ; Yang, Jing</creator><creatorcontrib>Jiang, Jing ; Shi, Shunping ; Zhao, Xiaofeng ; Duan, Zhanjiang ; Hu, Jiabao ; Tang, Leilei ; Yang, Ruixiao ; Yang, Jing</creatorcontrib><description>To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2‐TZVP level and the PBE0‐D3/def2‐TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mgn@H2O (n = 4–8) complexes and MgnO (n = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg4 cluster and H2O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.
We catalyzed water molecules using Mgn (n = 4–8) clusters to produce hydrogen gas. The Mg8 cluster exhibits the best hydrogen evolution effect, as can be seen by comparing the energy barrier diagram, and the hydrogen molecules are fully precipitated, as can be shown by examining the IRI diagram.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.27383</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Catalytic activity ; Clusters ; Density functional theory ; Function analysis ; hydrogen evolution reaction ; Hydrogen evolution reactions ; IRI analysis ; NPA analysis ; Reaction mechanisms</subject><ispartof>International journal of quantum chemistry, 2024-05, Vol.124 (9), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0001-9611-2490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.27383$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.27383$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Shi, Shunping</creatorcontrib><creatorcontrib>Zhao, Xiaofeng</creatorcontrib><creatorcontrib>Duan, Zhanjiang</creatorcontrib><creatorcontrib>Hu, Jiabao</creatorcontrib><creatorcontrib>Tang, Leilei</creatorcontrib><creatorcontrib>Yang, Ruixiao</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><title>Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory</title><title>International journal of quantum chemistry</title><description>To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2‐TZVP level and the PBE0‐D3/def2‐TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mgn@H2O (n = 4–8) complexes and MgnO (n = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg4 cluster and H2O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.
We catalyzed water molecules using Mgn (n = 4–8) clusters to produce hydrogen gas. The Mg8 cluster exhibits the best hydrogen evolution effect, as can be seen by comparing the energy barrier diagram, and the hydrogen molecules are fully precipitated, as can be shown by examining the IRI diagram.</description><subject>Catalytic activity</subject><subject>Clusters</subject><subject>Density functional theory</subject><subject>Function analysis</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>IRI analysis</subject><subject>NPA analysis</subject><subject>Reaction mechanisms</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotUD1PwzAQtRBIlMLAP7DEAkNaf8VOBoaq4qNSEUKiElvkOE7qKiSt7RRl6wgz_7C_hKRlON3p7r13dw-Aa4xGGCEy3jRyRASN6AkYYBSLgHH8cQoG3QwFgqPoHFw4t0IIccrFAHzPqq123hTSm6qAfqmhkl6WrTcKSuXN1vgW1jl8KSp4W-13P_ddsP3uN7qDqmyc19bBvLYH6rLNbF3oCuptXTbe1BW0ulfpisb1CzJduV4xb6pDW5Y9sbbtJTjLZen01X8egsXjw_v0OZi_Ps2mk3mwJoTSQEYM85STWIg0JCrVhGUhx1HElMKhyBkVuQpRGlLElVIZ5pzmOY5pTDjTqaRDcHPUXdt603SvJ6u6sd0dLqEoRJwxSuIONT6ivkyp22Rtzae0bYJR0rucdC4nB5eTt8XkUNA_hwp2RQ</recordid><startdate>20240505</startdate><enddate>20240505</enddate><creator>Jiang, Jing</creator><creator>Shi, Shunping</creator><creator>Zhao, Xiaofeng</creator><creator>Duan, Zhanjiang</creator><creator>Hu, Jiabao</creator><creator>Tang, Leilei</creator><creator>Yang, Ruixiao</creator><creator>Yang, Jing</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0009-0001-9611-2490</orcidid></search><sort><creationdate>20240505</creationdate><title>Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory</title><author>Jiang, Jing ; Shi, Shunping ; Zhao, Xiaofeng ; Duan, Zhanjiang ; Hu, Jiabao ; Tang, Leilei ; Yang, Ruixiao ; Yang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2233-a8416b62977b52cbe24d561884cc157f437fc50b5306cccd1663ff1939264eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic activity</topic><topic>Clusters</topic><topic>Density functional theory</topic><topic>Function analysis</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>IRI analysis</topic><topic>NPA analysis</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jing</creatorcontrib><creatorcontrib>Shi, Shunping</creatorcontrib><creatorcontrib>Zhao, Xiaofeng</creatorcontrib><creatorcontrib>Duan, Zhanjiang</creatorcontrib><creatorcontrib>Hu, Jiabao</creatorcontrib><creatorcontrib>Tang, Leilei</creatorcontrib><creatorcontrib>Yang, Ruixiao</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jing</au><au>Shi, Shunping</au><au>Zhao, Xiaofeng</au><au>Duan, Zhanjiang</au><au>Hu, Jiabao</au><au>Tang, Leilei</au><au>Yang, Ruixiao</au><au>Yang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2024-05-05</date><risdate>2024</risdate><volume>124</volume><issue>9</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2‐TZVP level and the PBE0‐D3/def2‐TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mgn@H2O (n = 4–8) complexes and MgnO (n = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg4 cluster and H2O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.
We catalyzed water molecules using Mgn (n = 4–8) clusters to produce hydrogen gas. The Mg8 cluster exhibits the best hydrogen evolution effect, as can be seen by comparing the energy barrier diagram, and the hydrogen molecules are fully precipitated, as can be shown by examining the IRI diagram.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/qua.27383</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-9611-2490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2024-05, Vol.124 (9), p.n/a |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_proquest_journals_3050644329 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalytic activity Clusters Density functional theory Function analysis hydrogen evolution reaction Hydrogen evolution reactions IRI analysis NPA analysis Reaction mechanisms |
title | Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20catalytic%20activity%20of%20Mgn%20(n%E2%80%89=%E2%80%894%E2%80%938)%20clusters%20for%20the%20hydrogen%20evolution%20reaction%20using%20density%20functional%20theory&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Jiang,%20Jing&rft.date=2024-05-05&rft.volume=124&rft.issue=9&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.27383&rft_dat=%3Cproquest_wiley%3E3050644329%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050644329&rft_id=info:pmid/&rfr_iscdi=true |