Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation

This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2024-05, Vol.32 (5), p.2850-2862
Hauptverfasser: Zhao, Ning, Tian, Yongjie, Zhang, Huiyan, Herrera-Viedma, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2862
container_issue 5
container_start_page 2850
container_title IEEE transactions on fuzzy systems
container_volume 32
creator Zhao, Ning
Tian, Yongjie
Zhang, Huiyan
Herrera-Viedma, Enrique
description This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.
doi_str_mv 10.1109/TFUZZ.2024.3363839
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3050305402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10428064</ieee_id><sourcerecordid>3050305402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiYj-AeNhE8_F2Y-W7hFRlATkAMSES7PtTrWI27q7NYH44y3CwcNkJpl5nkneILim0KMU5N1itFytegyY6HEe84TLk6BDpaAhABen7QwxD-M-xOfBhXNrACoimnSCnwkqa0rzFt4rh5oMtKp9-Y1k1Ox2WzJrfN14MkLUmco_yLAy3lYbUlSWTMfTGXmpzKY0rYPMt87jpyOvpX8nD5hj66kMGXjfgo4oo8nY7GVz5Rur9svL4KxQG4dXx94NlqPHxfA5nMyexsPBJMyZjH2IMmeUZ5lkmgutZJYA5HEk8lhrXbB-UcgCBaiIcSi4jPpC8ihTkGVRRDXmvBvcHry1rb4adD5dV4017cuUQwRtCWDtFTtc5bZyzmKR1rb8VHabUkj3Kad_Kaf7lNNjyi10c4BKRPwHCJZALPgvX7d6sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050305402</pqid></control><display><type>article</type><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</creator><creatorcontrib>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</creatorcontrib><description>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3363839</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Closed loops ; Control methods ; Control systems ; Deception ; Deception attacks ; dual-channel event-triggered control ; Feedback control ; Fuzzy control ; Fuzzy logic ; input saturation ; Learning ; MIMO (control systems) ; MIMO communication ; multiple-input–multiple-output (MIMO) nonlinear systems ; Nonlinear control ; Nonlinear systems ; Output feedback ; Parameters ; single-parameter learning ; State observers ; Switches</subject><ispartof>IEEE transactions on fuzzy systems, 2024-05, Vol.32 (5), p.2850-2862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</citedby><cites>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</cites><orcidid>0000-0002-9877-6872 ; 0009-0009-8300-4667 ; 0000-0003-3406-8954 ; 0000-0002-7922-4984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10428064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10428064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Tian, Yongjie</creatorcontrib><creatorcontrib>Zhang, Huiyan</creatorcontrib><creatorcontrib>Herrera-Viedma, Enrique</creatorcontrib><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Deception</subject><subject>Deception attacks</subject><subject>dual-channel event-triggered control</subject><subject>Feedback control</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>input saturation</subject><subject>Learning</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>multiple-input–multiple-output (MIMO) nonlinear systems</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>Parameters</subject><subject>single-parameter learning</subject><subject>State observers</subject><subject>Switches</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhhujiYj-AeNhE8_F2Y-W7hFRlATkAMSES7PtTrWI27q7NYH44y3CwcNkJpl5nkneILim0KMU5N1itFytegyY6HEe84TLk6BDpaAhABen7QwxD-M-xOfBhXNrACoimnSCnwkqa0rzFt4rh5oMtKp9-Y1k1Ox2WzJrfN14MkLUmco_yLAy3lYbUlSWTMfTGXmpzKY0rYPMt87jpyOvpX8nD5hj66kMGXjfgo4oo8nY7GVz5Rur9svL4KxQG4dXx94NlqPHxfA5nMyexsPBJMyZjH2IMmeUZ5lkmgutZJYA5HEk8lhrXbB-UcgCBaiIcSi4jPpC8ihTkGVRRDXmvBvcHry1rb4adD5dV4017cuUQwRtCWDtFTtc5bZyzmKR1rb8VHabUkj3Kad_Kaf7lNNjyi10c4BKRPwHCJZALPgvX7d6sg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhao, Ning</creator><creator>Tian, Yongjie</creator><creator>Zhang, Huiyan</creator><creator>Herrera-Viedma, Enrique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9877-6872</orcidid><orcidid>https://orcid.org/0009-0009-8300-4667</orcidid><orcidid>https://orcid.org/0000-0003-3406-8954</orcidid><orcidid>https://orcid.org/0000-0002-7922-4984</orcidid></search><sort><creationdate>20240501</creationdate><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><author>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Deception</topic><topic>Deception attacks</topic><topic>dual-channel event-triggered control</topic><topic>Feedback control</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>input saturation</topic><topic>Learning</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>multiple-input–multiple-output (MIMO) nonlinear systems</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>Parameters</topic><topic>single-parameter learning</topic><topic>State observers</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Tian, Yongjie</creatorcontrib><creatorcontrib>Zhang, Huiyan</creatorcontrib><creatorcontrib>Herrera-Viedma, Enrique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ning</au><au>Tian, Yongjie</au><au>Zhang, Huiyan</au><au>Herrera-Viedma, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>32</volume><issue>5</issue><spage>2850</spage><epage>2862</epage><pages>2850-2862</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3363839</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9877-6872</orcidid><orcidid>https://orcid.org/0009-0009-8300-4667</orcidid><orcidid>https://orcid.org/0000-0003-3406-8954</orcidid><orcidid>https://orcid.org/0000-0002-7922-4984</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2024-05, Vol.32 (5), p.2850-2862
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_3050305402
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive systems
Closed loops
Control methods
Control systems
Deception
Deception attacks
dual-channel event-triggered control
Feedback control
Fuzzy control
Fuzzy logic
input saturation
Learning
MIMO (control systems)
MIMO communication
multiple-input–multiple-output (MIMO) nonlinear systems
Nonlinear control
Nonlinear systems
Output feedback
Parameters
single-parameter learning
State observers
Switches
title Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20Adaptive%20Fuzzy%20Output%20Feedback%20Control%20for%20MIMO%20Nonlinear%20Systems%20With%20Deception%20Attacks%20and%20Input%20Saturation&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Zhao,%20Ning&rft.date=2024-05-01&rft.volume=32&rft.issue=5&rft.spage=2850&rft.epage=2862&rft.pages=2850-2862&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3363839&rft_dat=%3Cproquest_RIE%3E3050305402%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050305402&rft_id=info:pmid/&rft_ieee_id=10428064&rfr_iscdi=true