Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation
This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2024-05, Vol.32 (5), p.2850-2862 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2862 |
---|---|
container_issue | 5 |
container_start_page | 2850 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 32 |
creator | Zhao, Ning Tian, Yongjie Zhang, Huiyan Herrera-Viedma, Enrique |
description | This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach. |
doi_str_mv | 10.1109/TFUZZ.2024.3363839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3050305402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10428064</ieee_id><sourcerecordid>3050305402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiYj-AeNhE8_F2Y-W7hFRlATkAMSES7PtTrWI27q7NYH44y3CwcNkJpl5nkneILim0KMU5N1itFytegyY6HEe84TLk6BDpaAhABen7QwxD-M-xOfBhXNrACoimnSCnwkqa0rzFt4rh5oMtKp9-Y1k1Ox2WzJrfN14MkLUmco_yLAy3lYbUlSWTMfTGXmpzKY0rYPMt87jpyOvpX8nD5hj66kMGXjfgo4oo8nY7GVz5Rur9svL4KxQG4dXx94NlqPHxfA5nMyexsPBJMyZjH2IMmeUZ5lkmgutZJYA5HEk8lhrXbB-UcgCBaiIcSi4jPpC8ihTkGVRRDXmvBvcHry1rb4adD5dV4017cuUQwRtCWDtFTtc5bZyzmKR1rb8VHabUkj3Kad_Kaf7lNNjyi10c4BKRPwHCJZALPgvX7d6sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050305402</pqid></control><display><type>article</type><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</creator><creatorcontrib>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</creatorcontrib><description>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3363839</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Closed loops ; Control methods ; Control systems ; Deception ; Deception attacks ; dual-channel event-triggered control ; Feedback control ; Fuzzy control ; Fuzzy logic ; input saturation ; Learning ; MIMO (control systems) ; MIMO communication ; multiple-input–multiple-output (MIMO) nonlinear systems ; Nonlinear control ; Nonlinear systems ; Output feedback ; Parameters ; single-parameter learning ; State observers ; Switches</subject><ispartof>IEEE transactions on fuzzy systems, 2024-05, Vol.32 (5), p.2850-2862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</citedby><cites>FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</cites><orcidid>0000-0002-9877-6872 ; 0009-0009-8300-4667 ; 0000-0003-3406-8954 ; 0000-0002-7922-4984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10428064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10428064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Tian, Yongjie</creatorcontrib><creatorcontrib>Zhang, Huiyan</creatorcontrib><creatorcontrib>Herrera-Viedma, Enrique</creatorcontrib><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Deception</subject><subject>Deception attacks</subject><subject>dual-channel event-triggered control</subject><subject>Feedback control</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>input saturation</subject><subject>Learning</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>multiple-input–multiple-output (MIMO) nonlinear systems</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>Parameters</subject><subject>single-parameter learning</subject><subject>State observers</subject><subject>Switches</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhhujiYj-AeNhE8_F2Y-W7hFRlATkAMSES7PtTrWI27q7NYH44y3CwcNkJpl5nkneILim0KMU5N1itFytegyY6HEe84TLk6BDpaAhABen7QwxD-M-xOfBhXNrACoimnSCnwkqa0rzFt4rh5oMtKp9-Y1k1Ox2WzJrfN14MkLUmco_yLAy3lYbUlSWTMfTGXmpzKY0rYPMt87jpyOvpX8nD5hj66kMGXjfgo4oo8nY7GVz5Rur9svL4KxQG4dXx94NlqPHxfA5nMyexsPBJMyZjH2IMmeUZ5lkmgutZJYA5HEk8lhrXbB-UcgCBaiIcSi4jPpC8ihTkGVRRDXmvBvcHry1rb4adD5dV4017cuUQwRtCWDtFTtc5bZyzmKR1rb8VHabUkj3Kad_Kaf7lNNjyi10c4BKRPwHCJZALPgvX7d6sg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhao, Ning</creator><creator>Tian, Yongjie</creator><creator>Zhang, Huiyan</creator><creator>Herrera-Viedma, Enrique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9877-6872</orcidid><orcidid>https://orcid.org/0009-0009-8300-4667</orcidid><orcidid>https://orcid.org/0000-0003-3406-8954</orcidid><orcidid>https://orcid.org/0000-0002-7922-4984</orcidid></search><sort><creationdate>20240501</creationdate><title>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</title><author>Zhao, Ning ; Tian, Yongjie ; Zhang, Huiyan ; Herrera-Viedma, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-e9c213bb92d34da9b800c654c6dddf27ff9fe40a5230f39574935ba0bb551dec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Deception</topic><topic>Deception attacks</topic><topic>dual-channel event-triggered control</topic><topic>Feedback control</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>input saturation</topic><topic>Learning</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>multiple-input–multiple-output (MIMO) nonlinear systems</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>Parameters</topic><topic>single-parameter learning</topic><topic>State observers</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ning</creatorcontrib><creatorcontrib>Tian, Yongjie</creatorcontrib><creatorcontrib>Zhang, Huiyan</creatorcontrib><creatorcontrib>Herrera-Viedma, Enrique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ning</au><au>Tian, Yongjie</au><au>Zhang, Huiyan</au><au>Herrera-Viedma, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>32</volume><issue>5</issue><spage>2850</spage><epage>2862</epage><pages>2850-2862</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article proposes an adaptive fuzzy dual-channel event-triggered output feedback control approach for a class of multiple-input-multiple-output (MIMO) systems with deception attacks and input saturation. Due to the consideration of two pivotal factors simultaneously, including deception attacks and input saturation, the existing methods are difficult to be directly applied. To this end, a novel fuzzy state observer and an auxiliary system are constructed to address unavailable impaired system states and input saturation, respectively. Furthermore, by constructing a new transformation of coordinate and employing adaptive fuzzy technique and single parameter learning approach, the sensor deception attacks, fuzzy weight, and external disturbance are reconstructed online into linear composite uncertain terms with single parameter under the framework of backstepping and dynamic surface design. In addition, the communication and computation burden is significantly reduced by using fewer single-parameter adaptive laws and dual-channel event-triggered strategy. The proposed control method guarantees that all signals within the closed-loop system are bounded. Meanwhile, the Zeno behavior is avoided. Finally, a simulation example is provided to verify the availability of the presented approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3363839</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9877-6872</orcidid><orcidid>https://orcid.org/0009-0009-8300-4667</orcidid><orcidid>https://orcid.org/0000-0003-3406-8954</orcidid><orcidid>https://orcid.org/0000-0002-7922-4984</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2024-05, Vol.32 (5), p.2850-2862 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_3050305402 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive systems Closed loops Control methods Control systems Deception Deception attacks dual-channel event-triggered control Feedback control Fuzzy control Fuzzy logic input saturation Learning MIMO (control systems) MIMO communication multiple-input–multiple-output (MIMO) nonlinear systems Nonlinear control Nonlinear systems Output feedback Parameters single-parameter learning State observers Switches |
title | Learning-Based Adaptive Fuzzy Output Feedback Control for MIMO Nonlinear Systems With Deception Attacks and Input Saturation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20Adaptive%20Fuzzy%20Output%20Feedback%20Control%20for%20MIMO%20Nonlinear%20Systems%20With%20Deception%20Attacks%20and%20Input%20Saturation&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Zhao,%20Ning&rft.date=2024-05-01&rft.volume=32&rft.issue=5&rft.spage=2850&rft.epage=2862&rft.pages=2850-2862&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3363839&rft_dat=%3Cproquest_RIE%3E3050305402%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050305402&rft_id=info:pmid/&rft_ieee_id=10428064&rfr_iscdi=true |