Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems
While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriousl...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.58275-58287 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58287 |
---|---|
container_issue | |
container_start_page | 58275 |
container_title | IEEE access |
container_volume | 12 |
creator | Lilienthal, Derek Mello, Paul Eirinaki, Magdalini Tiomkin, Stas |
description | While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriously challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities of diffusion models in generating realistic data across various domains. In this work we introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems. SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@ k and 4.65% in NDCG@ k . |
doi_str_mv | 10.1109/ACCESS.2024.3388299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050303872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10497577</ieee_id><doaj_id>oai_doaj_org_article_8cd3581cdfc244a08f541df60f6275ba</doaj_id><sourcerecordid>3050303872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1dfa2c3faf709063ec4fd4c59b89e3659df6be0749b94f1e3ca102824bb008c63</originalsourceid><addsrcrecordid>eNpNUF1LwzAULaLgmPsF-jDwuTOfbfI4uqmDibLpc0jTG8nYmpm0g_17Oztk9-UeLvd8cJLkHqMJxkg-TYtivl5PCCJsQqkQRMqrZEBwJlPKaXZ9gW-TUYwb1I3oTjwfJLO3dtu4dAXRb9vG-Xo8c9a28YSsD-OP4A7aHNM11NE17gDjFRi_20FdQRivj7GBXbxLbqzeRhid9zD5ep5_Fq_p8v1lUUyXqaFcNimurCaGWm1zJFFGwTBbMcNlKSTQjMvKZiWgnMlSMouBGo0REYSVZRfYZHSYLHrdyuuN2ge30-GovHbq7-DDt9KhcWYLSpiKcoFNZQ1hTCNhOev8M2QzkvNSd1qPvdY--J8WYqM2vg11F19RxBFFVOSk-6L9lwk-xgD23xUjdWpf9e2rU_vq3H7HeuhZDgAuGEzmPM_pLzX8gPU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050303872</pqid></control><display><type>article</type><title>Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lilienthal, Derek ; Mello, Paul ; Eirinaki, Magdalini ; Tiomkin, Stas</creator><creatorcontrib>Lilienthal, Derek ; Mello, Paul ; Eirinaki, Magdalini ; Tiomkin, Stas</creatorcontrib><description><![CDATA[While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriously challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities of diffusion models in generating realistic data across various domains. In this work we introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems. SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> and 4.65% in NDCG@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3388299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data privacy ; Datasets ; diffusion models ; Diffusion processes ; Gaussian distribution ; Generative adversarial networks ; Generative artificial intelligence ; Machine learning ; Noise reduction ; Privacy ; Recommender systems ; Synthetic data ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.58275-58287</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1dfa2c3faf709063ec4fd4c59b89e3659df6be0749b94f1e3ca102824bb008c63</cites><orcidid>0000-0002-4711-3366 ; 0009-0003-0407-6424 ; 0009-0008-8306-9877 ; 0000-0003-3677-6874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10497577$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lilienthal, Derek</creatorcontrib><creatorcontrib>Mello, Paul</creatorcontrib><creatorcontrib>Eirinaki, Magdalini</creatorcontrib><creatorcontrib>Tiomkin, Stas</creatorcontrib><title>Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriously challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities of diffusion models in generating realistic data across various domains. In this work we introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems. SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> and 4.65% in NDCG@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>.]]></description><subject>Data models</subject><subject>Data privacy</subject><subject>Datasets</subject><subject>diffusion models</subject><subject>Diffusion processes</subject><subject>Gaussian distribution</subject><subject>Generative adversarial networks</subject><subject>Generative artificial intelligence</subject><subject>Machine learning</subject><subject>Noise reduction</subject><subject>Privacy</subject><subject>Recommender systems</subject><subject>Synthetic data</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LwzAULaLgmPsF-jDwuTOfbfI4uqmDibLpc0jTG8nYmpm0g_17Oztk9-UeLvd8cJLkHqMJxkg-TYtivl5PCCJsQqkQRMqrZEBwJlPKaXZ9gW-TUYwb1I3oTjwfJLO3dtu4dAXRb9vG-Xo8c9a28YSsD-OP4A7aHNM11NE17gDjFRi_20FdQRivj7GBXbxLbqzeRhid9zD5ep5_Fq_p8v1lUUyXqaFcNimurCaGWm1zJFFGwTBbMcNlKSTQjMvKZiWgnMlSMouBGo0REYSVZRfYZHSYLHrdyuuN2ge30-GovHbq7-DDt9KhcWYLSpiKcoFNZQ1hTCNhOev8M2QzkvNSd1qPvdY--J8WYqM2vg11F19RxBFFVOSk-6L9lwk-xgD23xUjdWpf9e2rU_vq3H7HeuhZDgAuGEzmPM_pLzX8gPU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lilienthal, Derek</creator><creator>Mello, Paul</creator><creator>Eirinaki, Magdalini</creator><creator>Tiomkin, Stas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4711-3366</orcidid><orcidid>https://orcid.org/0009-0003-0407-6424</orcidid><orcidid>https://orcid.org/0009-0008-8306-9877</orcidid><orcidid>https://orcid.org/0000-0003-3677-6874</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems</title><author>Lilienthal, Derek ; Mello, Paul ; Eirinaki, Magdalini ; Tiomkin, Stas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1dfa2c3faf709063ec4fd4c59b89e3659df6be0749b94f1e3ca102824bb008c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Data privacy</topic><topic>Datasets</topic><topic>diffusion models</topic><topic>Diffusion processes</topic><topic>Gaussian distribution</topic><topic>Generative adversarial networks</topic><topic>Generative artificial intelligence</topic><topic>Machine learning</topic><topic>Noise reduction</topic><topic>Privacy</topic><topic>Recommender systems</topic><topic>Synthetic data</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilienthal, Derek</creatorcontrib><creatorcontrib>Mello, Paul</creatorcontrib><creatorcontrib>Eirinaki, Magdalini</creatorcontrib><creatorcontrib>Tiomkin, Stas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilienthal, Derek</au><au>Mello, Paul</au><au>Eirinaki, Magdalini</au><au>Tiomkin, Stas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>58275</spage><epage>58287</epage><pages>58275-58287</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[While recommender systems have become an integral component of the Web experience, their heavy reliance on user data raises privacy and security concerns. Substituting user data with synthetic data can address these concerns, but accurately replicating these real-world datasets has been a notoriously challenging problem. Recent advancements in generative AI have demonstrated the impressive capabilities of diffusion models in generating realistic data across various domains. In this work we introduce a Score-based Diffusion Recommendation Module (SDRM), which captures the intricate patterns of real-world datasets required for training highly accurate recommender systems. SDRM allows for the generation of synthetic data that can replace existing datasets to preserve user privacy, or augment existing datasets to address excessive data sparsity. Our method outperforms competing baselines such as generative adversarial networks, variational autoencoders, and recently proposed diffusion models in synthesizing various datasets to replace or augment the original data by an average improvement of 4.30% in Recall@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> and 4.65% in NDCG@<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3388299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4711-3366</orcidid><orcidid>https://orcid.org/0009-0003-0407-6424</orcidid><orcidid>https://orcid.org/0009-0008-8306-9877</orcidid><orcidid>https://orcid.org/0000-0003-3677-6874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.58275-58287 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3050303872 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Data models Data privacy Datasets diffusion models Diffusion processes Gaussian distribution Generative adversarial networks Generative artificial intelligence Machine learning Noise reduction Privacy Recommender systems Synthetic data Training |
title | Multi-Resolution Diffusion for Privacy-Sensitive Recommender Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Resolution%20Diffusion%20for%20Privacy-Sensitive%20Recommender%20Systems&rft.jtitle=IEEE%20access&rft.au=Lilienthal,%20Derek&rft.date=2024&rft.volume=12&rft.spage=58275&rft.epage=58287&rft.pages=58275-58287&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3388299&rft_dat=%3Cproquest_cross%3E3050303872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050303872&rft_id=info:pmid/&rft_ieee_id=10497577&rft_doaj_id=oai_doaj_org_article_8cd3581cdfc244a08f541df60f6275ba&rfr_iscdi=true |