Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method
In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force t...
Gespeichert in:
Veröffentlicht in: | Computational particle mechanics 2024-04, Vol.11 (2), p.689-703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | 2 |
container_start_page | 689 |
container_title | Computational particle mechanics |
container_volume | 11 |
creator | Lee, Hoo Min Kim, Tae Hun Yoon, Gil Ho |
description | In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles. |
doi_str_mv | 10.1007/s40571-023-00647-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050231474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050231474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-45815d96cfd8eada64b751f136c889635158ad6d43330be5ea243ff95d80c6a43</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhSMEElXpH2CyxByw40ecsap4SZVYYLZc-6ZxlcbBdhD99yQEwcZ073C-I50vy64JviUYl3eRYV6SHBc0x1iwMidn2aIglcgZleL89y_lZbaK8YAxJpyWlaSL7HPd6fYUXUS-RsZ3kMdG92BRH_wBTHItoB00-sP5gOwQXLdHPXSQgk7Od8h1yaN90N3Q6oB6HZIzLUQ0xCmZGkDWRRMgAYIWjtAldITUeHuVXdS6jbD6ucvs7eH-dfOUb18enzfrbW6KEqeccUm4rYSprQRttWC7kpOaUGGkrATlhEtthWWUUrwDDrpgtK4rbiU2QjO6zG7m3nHQ-wAxqYMfwjg6Kor56IywckoVc8oEH2OAWvXBHXU4KYLVJFnNktUIqG_JiowQnaHYT14g_FX_Q30Bra6BYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050231474</pqid></control><display><type>article</type><title>Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method</title><source>SpringerNature Complete Journals</source><creator>Lee, Hoo Min ; Kim, Tae Hun ; Yoon, Gil Ho</creator><creatorcontrib>Lee, Hoo Min ; Kim, Tae Hun ; Yoon, Gil Ho</creatorcontrib><description>In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.</description><identifier>ISSN: 2196-4378</identifier><identifier>EISSN: 2196-4386</identifier><identifier>DOI: 10.1007/s40571-023-00647-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Discrete element method ; Drag ; Engineering ; Fluidizing ; Friction ; Mathematical analysis ; Mathematical models ; Penetration depth ; Projectiles ; Terminal ballistics ; Theoretical and Applied Mechanics</subject><ispartof>Computational particle mechanics, 2024-04, Vol.11 (2), p.689-703</ispartof><rights>The Author(s) under exclusive licence to OWZ 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-45815d96cfd8eada64b751f136c889635158ad6d43330be5ea243ff95d80c6a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40571-023-00647-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40571-023-00647-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Hoo Min</creatorcontrib><creatorcontrib>Kim, Tae Hun</creatorcontrib><creatorcontrib>Yoon, Gil Ho</creatorcontrib><title>Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method</title><title>Computational particle mechanics</title><addtitle>Comp. Part. Mech</addtitle><description>In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Discrete element method</subject><subject>Drag</subject><subject>Engineering</subject><subject>Fluidizing</subject><subject>Friction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Penetration depth</subject><subject>Projectiles</subject><subject>Terminal ballistics</subject><subject>Theoretical and Applied Mechanics</subject><issn>2196-4378</issn><issn>2196-4386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhSMEElXpH2CyxByw40ecsap4SZVYYLZc-6ZxlcbBdhD99yQEwcZ073C-I50vy64JviUYl3eRYV6SHBc0x1iwMidn2aIglcgZleL89y_lZbaK8YAxJpyWlaSL7HPd6fYUXUS-RsZ3kMdG92BRH_wBTHItoB00-sP5gOwQXLdHPXSQgk7Od8h1yaN90N3Q6oB6HZIzLUQ0xCmZGkDWRRMgAYIWjtAldITUeHuVXdS6jbD6ucvs7eH-dfOUb18enzfrbW6KEqeccUm4rYSprQRttWC7kpOaUGGkrATlhEtthWWUUrwDDrpgtK4rbiU2QjO6zG7m3nHQ-wAxqYMfwjg6Kor56IywckoVc8oEH2OAWvXBHXU4KYLVJFnNktUIqG_JiowQnaHYT14g_FX_Q30Bra6BYQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lee, Hoo Min</creator><creator>Kim, Tae Hun</creator><creator>Yoon, Gil Ho</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method</title><author>Lee, Hoo Min ; Kim, Tae Hun ; Yoon, Gil Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-45815d96cfd8eada64b751f136c889635158ad6d43330be5ea243ff95d80c6a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Discrete element method</topic><topic>Drag</topic><topic>Engineering</topic><topic>Fluidizing</topic><topic>Friction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Penetration depth</topic><topic>Projectiles</topic><topic>Terminal ballistics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoo Min</creatorcontrib><creatorcontrib>Kim, Tae Hun</creatorcontrib><creatorcontrib>Yoon, Gil Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Computational particle mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hoo Min</au><au>Kim, Tae Hun</au><au>Yoon, Gil Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method</atitle><jtitle>Computational particle mechanics</jtitle><stitle>Comp. Part. Mech</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>689</spage><epage>703</epage><pages>689-703</pages><issn>2196-4378</issn><eissn>2196-4386</eissn><abstract>In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40571-023-00647-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-4378 |
ispartof | Computational particle mechanics, 2024-04, Vol.11 (2), p.689-703 |
issn | 2196-4378 2196-4386 |
language | eng |
recordid | cdi_proquest_journals_3050231474 |
source | SpringerNature Complete Journals |
subjects | Classical and Continuum Physics Computational Science and Engineering Discrete element method Drag Engineering Fluidizing Friction Mathematical analysis Mathematical models Penetration depth Projectiles Terminal ballistics Theoretical and Applied Mechanics |
title | Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20cone-shaped%20projectile%20behavior%20during%20penetration%20into%20granular%20particles%20using%20the%20discrete%20element%20method&rft.jtitle=Computational%20particle%20mechanics&rft.au=Lee,%20Hoo%20Min&rft.date=2024-04-01&rft.volume=11&rft.issue=2&rft.spage=689&rft.epage=703&rft.pages=689-703&rft.issn=2196-4378&rft.eissn=2196-4386&rft_id=info:doi/10.1007/s40571-023-00647-1&rft_dat=%3Cproquest_cross%3E3050231474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050231474&rft_id=info:pmid/&rfr_iscdi=true |