New entanglement-assisted quantum error-correcting codes from negacyclic codes
Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical linear codes by relaxing the dual-containing condition and by using preshared entangled states between the sender and the recei...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2024-05, Vol.92 (5), p.1163-1174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 5 |
container_start_page | 1163 |
container_title | Designs, codes, and cryptography |
container_volume | 92 |
creator | Chen, Xiaojing Lu, Xingbo Zhu, Shixin Jiang, Wan Wang, Xindi |
description | Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical linear codes by relaxing the dual-containing condition and by using preshared entangled states between the sender and the receiver. In this paper, we investigate EAQEC codes of length
n
=
2
(
q
2
+
1
)
a
, where
q
is an odd prime power,
a
=
m
2
+
1
and
m
is an odd integer. The resulting EAQEC codes are entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes when the minimum distance
d
≤
n
+
2
2
. |
doi_str_mv | 10.1007/s10623-023-01335-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050231369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050231369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-830c9e4edc9b6b055bd363d2b843075d359bd085c9944f46a41f142b1bf07c73</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoenjD_Rk6Fnt6mVZxxL6gpBecheSLBuH2Eokm5J_XxkXeuth2GWZmYUPoQcCTwRAPicCJWUYZhHGBIYLtCJCMixFVV6iFSgqMAFKr9FNSnuAbAO6Qtut_y78MJqhPfg-L9ik1KXR18VpMsM49YWPMUTsQozejd3QFi7UPhVNDH0x-Na4szt0brneoavGHJK__523aPf2ult_4M3X--f6ZYMdlTDiioFTnvvaKVtaEMLWrGQ1tRVnIEXNhLI1VMIpxXnDS8NJQzi1xDYgnWS36HGpPcZwmnwa9T5MccgfNQORKRBWquyii8vFkFL0jT7GrjfxrAnoGZtesGmYNWPTkENsCaVsHlof_6r_Sf0AHmZwGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050231369</pqid></control><display><type>article</type><title>New entanglement-assisted quantum error-correcting codes from negacyclic codes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Xiaojing ; Lu, Xingbo ; Zhu, Shixin ; Jiang, Wan ; Wang, Xindi</creator><creatorcontrib>Chen, Xiaojing ; Lu, Xingbo ; Zhu, Shixin ; Jiang, Wan ; Wang, Xindi</creatorcontrib><description>Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical linear codes by relaxing the dual-containing condition and by using preshared entangled states between the sender and the receiver. In this paper, we investigate EAQEC codes of length
n
=
2
(
q
2
+
1
)
a
, where
q
is an odd prime power,
a
=
m
2
+
1
and
m
is an odd integer. The resulting EAQEC codes are entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes when the minimum distance
d
≤
n
+
2
2
.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01335-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coding and Information Theory ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Entangled states ; Error correcting codes ; Error correction</subject><ispartof>Designs, codes, and cryptography, 2024-05, Vol.92 (5), p.1163-1174</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-830c9e4edc9b6b055bd363d2b843075d359bd085c9944f46a41f142b1bf07c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-023-01335-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-023-01335-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Xiaojing</creatorcontrib><creatorcontrib>Lu, Xingbo</creatorcontrib><creatorcontrib>Zhu, Shixin</creatorcontrib><creatorcontrib>Jiang, Wan</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><title>New entanglement-assisted quantum error-correcting codes from negacyclic codes</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical linear codes by relaxing the dual-containing condition and by using preshared entangled states between the sender and the receiver. In this paper, we investigate EAQEC codes of length
n
=
2
(
q
2
+
1
)
a
, where
q
is an odd prime power,
a
=
m
2
+
1
and
m
is an odd integer. The resulting EAQEC codes are entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes when the minimum distance
d
≤
n
+
2
2
.</description><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Entangled states</subject><subject>Error correcting codes</subject><subject>Error correction</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoenjD_Rk6Fnt6mVZxxL6gpBecheSLBuH2Eokm5J_XxkXeuth2GWZmYUPoQcCTwRAPicCJWUYZhHGBIYLtCJCMixFVV6iFSgqMAFKr9FNSnuAbAO6Qtut_y78MJqhPfg-L9ik1KXR18VpMsM49YWPMUTsQozejd3QFi7UPhVNDH0x-Na4szt0brneoavGHJK__523aPf2ult_4M3X--f6ZYMdlTDiioFTnvvaKVtaEMLWrGQ1tRVnIEXNhLI1VMIpxXnDS8NJQzi1xDYgnWS36HGpPcZwmnwa9T5MccgfNQORKRBWquyii8vFkFL0jT7GrjfxrAnoGZtesGmYNWPTkENsCaVsHlof_6r_Sf0AHmZwGw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Xiaojing</creator><creator>Lu, Xingbo</creator><creator>Zhu, Shixin</creator><creator>Jiang, Wan</creator><creator>Wang, Xindi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>New entanglement-assisted quantum error-correcting codes from negacyclic codes</title><author>Chen, Xiaojing ; Lu, Xingbo ; Zhu, Shixin ; Jiang, Wan ; Wang, Xindi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-830c9e4edc9b6b055bd363d2b843075d359bd085c9944f46a41f142b1bf07c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Entangled states</topic><topic>Error correcting codes</topic><topic>Error correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaojing</creatorcontrib><creatorcontrib>Lu, Xingbo</creatorcontrib><creatorcontrib>Zhu, Shixin</creatorcontrib><creatorcontrib>Jiang, Wan</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaojing</au><au>Lu, Xingbo</au><au>Zhu, Shixin</au><au>Jiang, Wan</au><au>Wang, Xindi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New entanglement-assisted quantum error-correcting codes from negacyclic codes</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>92</volume><issue>5</issue><spage>1163</spage><epage>1174</epage><pages>1163-1174</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical linear codes by relaxing the dual-containing condition and by using preshared entangled states between the sender and the receiver. In this paper, we investigate EAQEC codes of length
n
=
2
(
q
2
+
1
)
a
, where
q
is an odd prime power,
a
=
m
2
+
1
and
m
is an odd integer. The resulting EAQEC codes are entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes when the minimum distance
d
≤
n
+
2
2
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01335-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2024-05, Vol.92 (5), p.1163-1174 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_3050231369 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coding and Information Theory Computer Science Cryptology Discrete Mathematics in Computer Science Entangled states Error correcting codes Error correction |
title | New entanglement-assisted quantum error-correcting codes from negacyclic codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20entanglement-assisted%20quantum%20error-correcting%20codes%20from%20negacyclic%20codes&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Chen,%20Xiaojing&rft.date=2024-05-01&rft.volume=92&rft.issue=5&rft.spage=1163&rft.epage=1174&rft.pages=1163-1174&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01335-0&rft_dat=%3Cproquest_cross%3E3050231369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050231369&rft_id=info:pmid/&rfr_iscdi=true |