The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces
We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decompositio...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2024-04, Vol.172 (2), p.445-469 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 2 |
container_start_page | 445 |
container_title | Acta mathematica Hungarica |
container_volume | 172 |
creator | Hao, X. B. Li, B. D. Yang, S. |
description | We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition for weighted
l
1
-sequences. Furthermore, the necessary and sufficient conditions for the boundedness of the discrete Hardy-Littlewood maximal operators on discrete weighted Morrey spaces are discussed. Particularly, the necessary and sufficient conditions are also discussed for the discrete power weights. |
doi_str_mv | 10.1007/s10474-024-01420-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050230693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050230693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e61c01ca9bd5131c08521f9c34f83b7c791c6fa8c7c654a1fddd57e1dce723d3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWAfGdhwnS1QBBRWx6d5y7Umbqq2Dnap0xx24YU-CS5DYsRjNLP7_o_8IuWZwywDUXWSQqzwDnoblHDJxQgZMlmXGC8FPyQC4KDLJq_ycXMS4BAApIB-Ql-kC6dgEtz98fk2arlvhzntH1-ajWZsV9S0G0_lA_Ya6JtqAHdIdNvNFh46--hBwT2NrLMZLclabVcSr3z0k08eH6WicTd6enkf3k8wKVnUZFswCs6aaOclEukvJWV1ZkdelmCmrKmaL2pRW2ULmhtXOOamQOYuKCyeG5KaPbYN_32Ls9NJvwyZ91AJk6glFJZKK9yobfIwBa92GVCjsNQN9RKZ7ZDoh0z_I9NEkelNM4s0cw1_0P65vOHhwEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050230693</pqid></control><display><type>article</type><title>The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Hao, X. B. ; Li, B. D. ; Yang, S.</creator><creatorcontrib>Hao, X. B. ; Li, B. D. ; Yang, S.</creatorcontrib><description>We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition for weighted
l
1
-sequences. Furthermore, the necessary and sufficient conditions for the boundedness of the discrete Hardy-Littlewood maximal operators on discrete weighted Morrey spaces are discussed. Particularly, the necessary and sufficient conditions are also discussed for the discrete power weights.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-024-01420-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Acta mathematica Hungarica, 2024-04, Vol.172 (2), p.445-469</ispartof><rights>The Author(s), under exclusive licence to Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e61c01ca9bd5131c08521f9c34f83b7c791c6fa8c7c654a1fddd57e1dce723d3</citedby><cites>FETCH-LOGICAL-c319t-e61c01ca9bd5131c08521f9c34f83b7c791c6fa8c7c654a1fddd57e1dce723d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-024-01420-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-024-01420-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hao, X. B.</creatorcontrib><creatorcontrib>Li, B. D.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><title>The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition for weighted
l
1
-sequences. Furthermore, the necessary and sufficient conditions for the boundedness of the discrete Hardy-Littlewood maximal operators on discrete weighted Morrey spaces are discussed. Particularly, the necessary and sufficient conditions are also discussed for the discrete power weights.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWAfGdhwnS1QBBRWx6d5y7Umbqq2Dnap0xx24YU-CS5DYsRjNLP7_o_8IuWZwywDUXWSQqzwDnoblHDJxQgZMlmXGC8FPyQC4KDLJq_ycXMS4BAApIB-Ql-kC6dgEtz98fk2arlvhzntH1-ajWZsV9S0G0_lA_Ya6JtqAHdIdNvNFh46--hBwT2NrLMZLclabVcSr3z0k08eH6WicTd6enkf3k8wKVnUZFswCs6aaOclEukvJWV1ZkdelmCmrKmaL2pRW2ULmhtXOOamQOYuKCyeG5KaPbYN_32Ls9NJvwyZ91AJk6glFJZKK9yobfIwBa92GVCjsNQN9RKZ7ZDoh0z_I9NEkelNM4s0cw1_0P65vOHhwEg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hao, X. B.</creator><creator>Li, B. D.</creator><creator>Yang, S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces</title><author>Hao, X. B. ; Li, B. D. ; Yang, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e61c01ca9bd5131c08521f9c34f83b7c791c6fa8c7c654a1fddd57e1dce723d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, X. B.</creatorcontrib><creatorcontrib>Li, B. D.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, X. B.</au><au>Li, B. D.</au><au>Yang, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>172</volume><issue>2</issue><spage>445</spage><epage>469</epage><pages>445-469</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition for weighted
l
1
-sequences. Furthermore, the necessary and sufficient conditions for the boundedness of the discrete Hardy-Littlewood maximal operators on discrete weighted Morrey spaces are discussed. Particularly, the necessary and sufficient conditions are also discussed for the discrete power weights.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-024-01420-3</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2024-04, Vol.172 (2), p.445-469 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_proquest_journals_3050230693 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematics Mathematics and Statistics Operators |
title | The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hardy%E2%80%93Littlewood%20maximal%20operator%20on%20discrete%20weighted%20Morrey%20spaces&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Hao,%20X.%20B.&rft.date=2024-04-01&rft.volume=172&rft.issue=2&rft.spage=445&rft.epage=469&rft.pages=445-469&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-024-01420-3&rft_dat=%3Cproquest_cross%3E3050230693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050230693&rft_id=info:pmid/&rfr_iscdi=true |