Practical Dataset Distillation Based on Deep Support Vectors
Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fractio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lee, Hyunho Lee, Junhoo Kwak, Nojun |
description | Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fraction of the entire dataset. We introduce a novel distillation method that augments the conventional process by incorporating general model knowledge via the addition of Deep KKT (DKKT) loss. In practical settings, our approach showed improved performance compared to the baseline distribution matching distillation method on the CIFAR-10 dataset. Additionally, we present experimental evidence that Deep Support Vectors (DSVs) offer unique information to the original distillation, and their integration results in enhanced performance. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049908086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049908086</sourcerecordid><originalsourceid>FETCH-proquest_journals_30499080863</originalsourceid><addsrcrecordid>eNqNisEKAiEURSUIGmr-QWg9YDozOdCqLFoGRdtBzMBBRvM9_z8XfUCrezjnLkjFhdg1suV8RWqAiTHG-z3vOlGRwy1pg85oT5VGDRapcoDOe40uzPRY1IsWUNZGes8xhoT0aQ2GBBuyfGsPtv7tmmwv58fp2sQUPtkCjlPIaS5pFKwdBiaZ7MV_ry8iYjdl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049908086</pqid></control><display><type>article</type><title>Practical Dataset Distillation Based on Deep Support Vectors</title><source>Free E- Journals</source><creator>Lee, Hyunho ; Lee, Junhoo ; Kwak, Nojun</creator><creatorcontrib>Lee, Hyunho ; Lee, Junhoo ; Kwak, Nojun</creatorcontrib><description>Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fraction of the entire dataset. We introduce a novel distillation method that augments the conventional process by incorporating general model knowledge via the addition of Deep KKT (DKKT) loss. In practical settings, our approach showed improved performance compared to the baseline distribution matching distillation method on the CIFAR-10 dataset. Additionally, we present experimental evidence that Deep Support Vectors (DSVs) offer unique information to the original distillation, and their integration results in enhanced performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Distillation ; Performance enhancement</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lee, Hyunho</creatorcontrib><creatorcontrib>Lee, Junhoo</creatorcontrib><creatorcontrib>Kwak, Nojun</creatorcontrib><title>Practical Dataset Distillation Based on Deep Support Vectors</title><title>arXiv.org</title><description>Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fraction of the entire dataset. We introduce a novel distillation method that augments the conventional process by incorporating general model knowledge via the addition of Deep KKT (DKKT) loss. In practical settings, our approach showed improved performance compared to the baseline distribution matching distillation method on the CIFAR-10 dataset. Additionally, we present experimental evidence that Deep Support Vectors (DSVs) offer unique information to the original distillation, and their integration results in enhanced performance.</description><subject>Datasets</subject><subject>Distillation</subject><subject>Performance enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKAiEURSUIGmr-QWg9YDozOdCqLFoGRdtBzMBBRvM9_z8XfUCrezjnLkjFhdg1suV8RWqAiTHG-z3vOlGRwy1pg85oT5VGDRapcoDOe40uzPRY1IsWUNZGes8xhoT0aQ2GBBuyfGsPtv7tmmwv58fp2sQUPtkCjlPIaS5pFKwdBiaZ7MV_ry8iYjdl</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Lee, Hyunho</creator><creator>Lee, Junhoo</creator><creator>Kwak, Nojun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240501</creationdate><title>Practical Dataset Distillation Based on Deep Support Vectors</title><author>Lee, Hyunho ; Lee, Junhoo ; Kwak, Nojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30499080863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Distillation</topic><topic>Performance enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyunho</creatorcontrib><creatorcontrib>Lee, Junhoo</creatorcontrib><creatorcontrib>Kwak, Nojun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyunho</au><au>Lee, Junhoo</au><au>Kwak, Nojun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Practical Dataset Distillation Based on Deep Support Vectors</atitle><jtitle>arXiv.org</jtitle><date>2024-05-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Conventional dataset distillation requires significant computational resources and assumes access to the entire dataset, an assumption impractical as it presumes all data resides on a central server. In this paper, we focus on dataset distillation in practical scenarios with access to only a fraction of the entire dataset. We introduce a novel distillation method that augments the conventional process by incorporating general model knowledge via the addition of Deep KKT (DKKT) loss. In practical settings, our approach showed improved performance compared to the baseline distribution matching distillation method on the CIFAR-10 dataset. Additionally, we present experimental evidence that Deep Support Vectors (DSVs) offer unique information to the original distillation, and their integration results in enhanced performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3049908086 |
source | Free E- Journals |
subjects | Datasets Distillation Performance enhancement |
title | Practical Dataset Distillation Based on Deep Support Vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Practical%20Dataset%20Distillation%20Based%20on%20Deep%20Support%20Vectors&rft.jtitle=arXiv.org&rft.au=Lee,%20Hyunho&rft.date=2024-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049908086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049908086&rft_id=info:pmid/&rfr_iscdi=true |