Object detection under the linear subspace model with application to cryo-EM images
Detecting multiple unknown objects in noisy data is a key problem in many scientific fields, such as electron microscopy imaging. A common model for the unknown objects is the linear subspace model, which assumes that the objects can be expanded in some known basis (such as the Fourier basis). In th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Amitay Eldar Keren Mor Waknin Davenport, Samuel Bendory, Tamir Schwartzman, Armin Shkolnisky, Yoel |
description | Detecting multiple unknown objects in noisy data is a key problem in many scientific fields, such as electron microscopy imaging. A common model for the unknown objects is the linear subspace model, which assumes that the objects can be expanded in some known basis (such as the Fourier basis). In this paper, we develop an object detection algorithm that under the linear subspace model is asymptotically guaranteed to detect all objects, while controlling the family wise error rate or the false discovery rate. Numerical simulations show that the algorithm also controls the error rate with high power in the non-asymptotic regime, even in highly challenging regimes. We apply the proposed algorithm to experimental electron microscopy data set, and show that it outperforms existing standard software. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049907786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049907786</sourcerecordid><originalsourceid>FETCH-proquest_journals_30499077863</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOC6EJN-11JxIy50L2n6tCltE_NBvL1FPICrWczMgkSM811SpoytSOxcTyllecGyjEfkcm56lB5a9DOUniBMLVrwHcKgJhQWXGicERJh1C0O8FK-A2HMoKT4Dl6DtG-d1CdQo3ig25DlXQwO4x_XZHuor_tjYqx-BnT-1utgp1ndOE2rihZFmfP_qg88BUAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049907786</pqid></control><display><type>article</type><title>Object detection under the linear subspace model with application to cryo-EM images</title><source>Freely Accessible Journals</source><creator>Amitay Eldar ; Keren Mor Waknin ; Davenport, Samuel ; Bendory, Tamir ; Schwartzman, Armin ; Shkolnisky, Yoel</creator><creatorcontrib>Amitay Eldar ; Keren Mor Waknin ; Davenport, Samuel ; Bendory, Tamir ; Schwartzman, Armin ; Shkolnisky, Yoel</creatorcontrib><description>Detecting multiple unknown objects in noisy data is a key problem in many scientific fields, such as electron microscopy imaging. A common model for the unknown objects is the linear subspace model, which assumes that the objects can be expanded in some known basis (such as the Fourier basis). In this paper, we develop an object detection algorithm that under the linear subspace model is asymptotically guaranteed to detect all objects, while controlling the family wise error rate or the false discovery rate. Numerical simulations show that the algorithm also controls the error rate with high power in the non-asymptotic regime, even in highly challenging regimes. We apply the proposed algorithm to experimental electron microscopy data set, and show that it outperforms existing standard software.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Asymptotic properties ; Electron microscopy ; Mathematical models ; Object recognition ; Subspaces</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Amitay Eldar</creatorcontrib><creatorcontrib>Keren Mor Waknin</creatorcontrib><creatorcontrib>Davenport, Samuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Shkolnisky, Yoel</creatorcontrib><title>Object detection under the linear subspace model with application to cryo-EM images</title><title>arXiv.org</title><description>Detecting multiple unknown objects in noisy data is a key problem in many scientific fields, such as electron microscopy imaging. A common model for the unknown objects is the linear subspace model, which assumes that the objects can be expanded in some known basis (such as the Fourier basis). In this paper, we develop an object detection algorithm that under the linear subspace model is asymptotically guaranteed to detect all objects, while controlling the family wise error rate or the false discovery rate. Numerical simulations show that the algorithm also controls the error rate with high power in the non-asymptotic regime, even in highly challenging regimes. We apply the proposed algorithm to experimental electron microscopy data set, and show that it outperforms existing standard software.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Electron microscopy</subject><subject>Mathematical models</subject><subject>Object recognition</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOC6EJN-11JxIy50L2n6tCltE_NBvL1FPICrWczMgkSM811SpoytSOxcTyllecGyjEfkcm56lB5a9DOUniBMLVrwHcKgJhQWXGicERJh1C0O8FK-A2HMoKT4Dl6DtG-d1CdQo3ig25DlXQwO4x_XZHuor_tjYqx-BnT-1utgp1ndOE2rihZFmfP_qg88BUAe</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Amitay Eldar</creator><creator>Keren Mor Waknin</creator><creator>Davenport, Samuel</creator><creator>Bendory, Tamir</creator><creator>Schwartzman, Armin</creator><creator>Shkolnisky, Yoel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240501</creationdate><title>Object detection under the linear subspace model with application to cryo-EM images</title><author>Amitay Eldar ; Keren Mor Waknin ; Davenport, Samuel ; Bendory, Tamir ; Schwartzman, Armin ; Shkolnisky, Yoel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30499077863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Electron microscopy</topic><topic>Mathematical models</topic><topic>Object recognition</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Amitay Eldar</creatorcontrib><creatorcontrib>Keren Mor Waknin</creatorcontrib><creatorcontrib>Davenport, Samuel</creatorcontrib><creatorcontrib>Bendory, Tamir</creatorcontrib><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Shkolnisky, Yoel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amitay Eldar</au><au>Keren Mor Waknin</au><au>Davenport, Samuel</au><au>Bendory, Tamir</au><au>Schwartzman, Armin</au><au>Shkolnisky, Yoel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Object detection under the linear subspace model with application to cryo-EM images</atitle><jtitle>arXiv.org</jtitle><date>2024-05-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Detecting multiple unknown objects in noisy data is a key problem in many scientific fields, such as electron microscopy imaging. A common model for the unknown objects is the linear subspace model, which assumes that the objects can be expanded in some known basis (such as the Fourier basis). In this paper, we develop an object detection algorithm that under the linear subspace model is asymptotically guaranteed to detect all objects, while controlling the family wise error rate or the false discovery rate. Numerical simulations show that the algorithm also controls the error rate with high power in the non-asymptotic regime, even in highly challenging regimes. We apply the proposed algorithm to experimental electron microscopy data set, and show that it outperforms existing standard software.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3049907786 |
source | Freely Accessible Journals |
subjects | Algorithms Asymptotic properties Electron microscopy Mathematical models Object recognition Subspaces |
title | Object detection under the linear subspace model with application to cryo-EM images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Object%20detection%20under%20the%20linear%20subspace%20model%20with%20application%20to%20cryo-EM%20images&rft.jtitle=arXiv.org&rft.au=Amitay%20Eldar&rft.date=2024-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049907786%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049907786&rft_id=info:pmid/&rfr_iscdi=true |