RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management
In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipel...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Venkatesh, C Oberoi, Harshit Pandey, Anurag Kumar Goyal, Anil Sikka, Nikhil |
description | In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049803518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049803518</sourcerecordid><originalsourceid>FETCH-proquest_journals_30498035183</originalsourceid><addsrcrecordid>eNqNyrsKwjAYhuEgCBbtPQScA2nSanWTEnVQEHFxKkF_e6BNag7q5ZvBC3D6ePmeEYoY5wnJU8YmKLa2pZSyxZJlGY_Q9SzIzjTwkuoGG2sb69ZYqDpkoypceOt0DwaLzwCBBYRdbbSvanw8kJN-g4E7LnQ_dLJRDh-lkhX0oNwMjR-ysxD_dormW3Ep9mQw-unBurLV3qhwlZymq5zyLMn5f-oL0gtCPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049803518</pqid></control><display><type>article</type><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><source>Free E- Journals</source><creator>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</creator><creatorcontrib>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</creatorcontrib><description>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Customer satisfaction ; Pipeline design ; Real estate</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Venkatesh, C</creatorcontrib><creatorcontrib>Oberoi, Harshit</creatorcontrib><creatorcontrib>Pandey, Anurag Kumar</creatorcontrib><creatorcontrib>Goyal, Anil</creatorcontrib><creatorcontrib>Sikka, Nikhil</creatorcontrib><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><title>arXiv.org</title><description>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</description><subject>Classifiers</subject><subject>Customer satisfaction</subject><subject>Pipeline design</subject><subject>Real estate</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAYhuEgCBbtPQScA2nSanWTEnVQEHFxKkF_e6BNag7q5ZvBC3D6ePmeEYoY5wnJU8YmKLa2pZSyxZJlGY_Q9SzIzjTwkuoGG2sb69ZYqDpkoypceOt0DwaLzwCBBYRdbbSvanw8kJN-g4E7LnQ_dLJRDh-lkhX0oNwMjR-ysxD_dormW3Ep9mQw-unBurLV3qhwlZymq5zyLMn5f-oL0gtCPw</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Venkatesh, C</creator><creator>Oberoi, Harshit</creator><creator>Pandey, Anurag Kumar</creator><creator>Goyal, Anil</creator><creator>Sikka, Nikhil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240429</creationdate><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><author>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30498035183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Customer satisfaction</topic><topic>Pipeline design</topic><topic>Real estate</topic><toplevel>online_resources</toplevel><creatorcontrib>Venkatesh, C</creatorcontrib><creatorcontrib>Oberoi, Harshit</creatorcontrib><creatorcontrib>Pandey, Anurag Kumar</creatorcontrib><creatorcontrib>Goyal, Anil</creatorcontrib><creatorcontrib>Sikka, Nikhil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesh, C</au><au>Oberoi, Harshit</au><au>Pandey, Anurag Kumar</au><au>Goyal, Anil</au><au>Sikka, Nikhil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</atitle><jtitle>arXiv.org</jtitle><date>2024-04-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3049803518 |
source | Free E- Journals |
subjects | Classifiers Customer satisfaction Pipeline design Real estate |
title | RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RE-GrievanceAssist:%20Enhancing%20Customer%20Experience%20through%20ML-Powered%20Complaint%20Management&rft.jtitle=arXiv.org&rft.au=Venkatesh,%20C&rft.date=2024-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049803518%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049803518&rft_id=info:pmid/&rfr_iscdi=true |