RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management

In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Venkatesh, C, Oberoi, Harshit, Pandey, Anurag Kumar, Goyal, Anil, Sikka, Nikhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Venkatesh, C
Oberoi, Harshit
Pandey, Anurag Kumar
Goyal, Anil
Sikka, Nikhil
description In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049803518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049803518</sourcerecordid><originalsourceid>FETCH-proquest_journals_30498035183</originalsourceid><addsrcrecordid>eNqNyrsKwjAYhuEgCBbtPQScA2nSanWTEnVQEHFxKkF_e6BNag7q5ZvBC3D6ePmeEYoY5wnJU8YmKLa2pZSyxZJlGY_Q9SzIzjTwkuoGG2sb69ZYqDpkoypceOt0DwaLzwCBBYRdbbSvanw8kJN-g4E7LnQ_dLJRDh-lkhX0oNwMjR-ysxD_dormW3Ep9mQw-unBurLV3qhwlZymq5zyLMn5f-oL0gtCPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049803518</pqid></control><display><type>article</type><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><source>Free E- Journals</source><creator>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</creator><creatorcontrib>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</creatorcontrib><description>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Customer satisfaction ; Pipeline design ; Real estate</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Venkatesh, C</creatorcontrib><creatorcontrib>Oberoi, Harshit</creatorcontrib><creatorcontrib>Pandey, Anurag Kumar</creatorcontrib><creatorcontrib>Goyal, Anil</creatorcontrib><creatorcontrib>Sikka, Nikhil</creatorcontrib><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><title>arXiv.org</title><description>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</description><subject>Classifiers</subject><subject>Customer satisfaction</subject><subject>Pipeline design</subject><subject>Real estate</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAYhuEgCBbtPQScA2nSanWTEnVQEHFxKkF_e6BNag7q5ZvBC3D6ePmeEYoY5wnJU8YmKLa2pZSyxZJlGY_Q9SzIzjTwkuoGG2sb69ZYqDpkoypceOt0DwaLzwCBBYRdbbSvanw8kJN-g4E7LnQ_dLJRDh-lkhX0oNwMjR-ysxD_dormW3Ep9mQw-unBurLV3qhwlZymq5zyLMn5f-oL0gtCPw</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Venkatesh, C</creator><creator>Oberoi, Harshit</creator><creator>Pandey, Anurag Kumar</creator><creator>Goyal, Anil</creator><creator>Sikka, Nikhil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240429</creationdate><title>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</title><author>Venkatesh, C ; Oberoi, Harshit ; Pandey, Anurag Kumar ; Goyal, Anil ; Sikka, Nikhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30498035183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Customer satisfaction</topic><topic>Pipeline design</topic><topic>Real estate</topic><toplevel>online_resources</toplevel><creatorcontrib>Venkatesh, C</creatorcontrib><creatorcontrib>Oberoi, Harshit</creatorcontrib><creatorcontrib>Pandey, Anurag Kumar</creatorcontrib><creatorcontrib>Goyal, Anil</creatorcontrib><creatorcontrib>Sikka, Nikhil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesh, C</au><au>Oberoi, Harshit</au><au>Pandey, Anurag Kumar</au><au>Goyal, Anil</au><au>Sikka, Nikhil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management</atitle><jtitle>arXiv.org</jtitle><date>2024-04-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In recent years, digital platform companies have faced increasing challenges in managing customer complaints, driven by widespread consumer adoption. This paper introduces an end-to-end pipeline, named RE-GrievanceAssist, designed specifically for real estate customer complaint management. The pipeline consists of three key components: i) response/no-response ML model using TF-IDF vectorization and XGBoost classifier ; ii) user type classifier using fasttext classifier; iii) issue/sub-issue classifier using TF-IDF vectorization and XGBoost classifier. Finally, it has been deployed as a batch job in Databricks, resulting in a remarkable 40% reduction in overall manual effort with monthly cost reduction of Rs 1,50,000 since August 2023.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3049803518
source Free E- Journals
subjects Classifiers
Customer satisfaction
Pipeline design
Real estate
title RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RE-GrievanceAssist:%20Enhancing%20Customer%20Experience%20through%20ML-Powered%20Complaint%20Management&rft.jtitle=arXiv.org&rft.au=Venkatesh,%20C&rft.date=2024-04-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049803518%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049803518&rft_id=info:pmid/&rfr_iscdi=true