Avoiding short progressions in Euclidean Ramsey theory

We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if \(\ell_m\) denotes \(m\) collinear points with consecutive points of distance one apart, we say that \(\mathbb{E}^n \not \to (\ell_r,\ell_s)\) if th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Currier, Gabriel, Moore, Kenneth, Yip, Chi Hoi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Currier, Gabriel
Moore, Kenneth
Yip, Chi Hoi
description We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if \(\ell_m\) denotes \(m\) collinear points with consecutive points of distance one apart, we say that \(\mathbb{E}^n \not \to (\ell_r,\ell_s)\) if there is a red/blue coloring of \(n\)-dimensional Euclidean space that avoids red congruent copies of \(\ell_r\) and blue congruent copies of \(\ell_s\). We show that \(\mathbb{E}^n \not \to (\ell_3, \ell_{20})\), improving the best-known result \(\mathbb{E}^n \not \to (\ell_3, \ell_{1177})\) by F\"uhrer and Tóth, and also establish \(\mathbb{E}^n \not \to (\ell_4, \ell_{18})\) and \(\mathbb{E}^n \not \to (\ell_5, \ell_{10})\) in the spirit of the classical result \(\mathbb{E}^n \not \to (\ell_6, \ell_{6})\) due to Erd{ő}s et. al. We also show a number of similar \(3\)-coloring results, as well as \(\mathbb{E}^n \not \to (\ell_3, \alpha\ell_{6889})\), where \(\alpha\) is an arbitrary positive real number. This final result answers a question of F\"uhrer and Tóth in the positive.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049794474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049794474</sourcerecordid><originalsourceid>FETCH-proquest_journals_30497944743</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EJO0saNIxVncS7Fpm1LzNC8R-vd28AOcbri7FUuElIfsqITYsJRo5JyLQos8lwkrTh-0rXU90IA-wMtj7w2RRUdgHVTxMdnWNA5uzZPMDGEw6OcdW3fNRCb9ccv2l-p-vmbL_46GQj1i9G5RteSq1KVSWsn_qi8G8jXd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049794474</pqid></control><display><type>article</type><title>Avoiding short progressions in Euclidean Ramsey theory</title><source>Free E- Journals</source><creator>Currier, Gabriel ; Moore, Kenneth ; Yip, Chi Hoi</creator><creatorcontrib>Currier, Gabriel ; Moore, Kenneth ; Yip, Chi Hoi</creatorcontrib><description>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if \(\ell_m\) denotes \(m\) collinear points with consecutive points of distance one apart, we say that \(\mathbb{E}^n \not \to (\ell_r,\ell_s)\) if there is a red/blue coloring of \(n\)-dimensional Euclidean space that avoids red congruent copies of \(\ell_r\) and blue congruent copies of \(\ell_s\). We show that \(\mathbb{E}^n \not \to (\ell_3, \ell_{20})\), improving the best-known result \(\mathbb{E}^n \not \to (\ell_3, \ell_{1177})\) by F\"uhrer and Tóth, and also establish \(\mathbb{E}^n \not \to (\ell_4, \ell_{18})\) and \(\mathbb{E}^n \not \to (\ell_5, \ell_{10})\) in the spirit of the classical result \(\mathbb{E}^n \not \to (\ell_6, \ell_{6})\) due to Erd{ő}s et. al. We also show a number of similar \(3\)-coloring results, as well as \(\mathbb{E}^n \not \to (\ell_3, \alpha\ell_{6889})\), where \(\alpha\) is an arbitrary positive real number. This final result answers a question of F\"uhrer and Tóth in the positive.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coloring ; Euclidean geometry ; Euclidean space ; Progressions ; Real numbers</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Currier, Gabriel</creatorcontrib><creatorcontrib>Moore, Kenneth</creatorcontrib><creatorcontrib>Yip, Chi Hoi</creatorcontrib><title>Avoiding short progressions in Euclidean Ramsey theory</title><title>arXiv.org</title><description>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if \(\ell_m\) denotes \(m\) collinear points with consecutive points of distance one apart, we say that \(\mathbb{E}^n \not \to (\ell_r,\ell_s)\) if there is a red/blue coloring of \(n\)-dimensional Euclidean space that avoids red congruent copies of \(\ell_r\) and blue congruent copies of \(\ell_s\). We show that \(\mathbb{E}^n \not \to (\ell_3, \ell_{20})\), improving the best-known result \(\mathbb{E}^n \not \to (\ell_3, \ell_{1177})\) by F\"uhrer and Tóth, and also establish \(\mathbb{E}^n \not \to (\ell_4, \ell_{18})\) and \(\mathbb{E}^n \not \to (\ell_5, \ell_{10})\) in the spirit of the classical result \(\mathbb{E}^n \not \to (\ell_6, \ell_{6})\) due to Erd{ő}s et. al. We also show a number of similar \(3\)-coloring results, as well as \(\mathbb{E}^n \not \to (\ell_3, \alpha\ell_{6889})\), where \(\alpha\) is an arbitrary positive real number. This final result answers a question of F\"uhrer and Tóth in the positive.</description><subject>Coloring</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Progressions</subject><subject>Real numbers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EJO0saNIxVncS7Fpm1LzNC8R-vd28AOcbri7FUuElIfsqITYsJRo5JyLQos8lwkrTh-0rXU90IA-wMtj7w2RRUdgHVTxMdnWNA5uzZPMDGEw6OcdW3fNRCb9ccv2l-p-vmbL_46GQj1i9G5RteSq1KVSWsn_qi8G8jXd</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Currier, Gabriel</creator><creator>Moore, Kenneth</creator><creator>Yip, Chi Hoi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240430</creationdate><title>Avoiding short progressions in Euclidean Ramsey theory</title><author>Currier, Gabriel ; Moore, Kenneth ; Yip, Chi Hoi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30497944743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coloring</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Progressions</topic><topic>Real numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Currier, Gabriel</creatorcontrib><creatorcontrib>Moore, Kenneth</creatorcontrib><creatorcontrib>Yip, Chi Hoi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Currier, Gabriel</au><au>Moore, Kenneth</au><au>Yip, Chi Hoi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Avoiding short progressions in Euclidean Ramsey theory</atitle><jtitle>arXiv.org</jtitle><date>2024-04-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We provide a general framework to construct colorings avoiding short monochromatic arithmetic progressions in Euclidean Ramsey theory. Specifically, if \(\ell_m\) denotes \(m\) collinear points with consecutive points of distance one apart, we say that \(\mathbb{E}^n \not \to (\ell_r,\ell_s)\) if there is a red/blue coloring of \(n\)-dimensional Euclidean space that avoids red congruent copies of \(\ell_r\) and blue congruent copies of \(\ell_s\). We show that \(\mathbb{E}^n \not \to (\ell_3, \ell_{20})\), improving the best-known result \(\mathbb{E}^n \not \to (\ell_3, \ell_{1177})\) by F\"uhrer and Tóth, and also establish \(\mathbb{E}^n \not \to (\ell_4, \ell_{18})\) and \(\mathbb{E}^n \not \to (\ell_5, \ell_{10})\) in the spirit of the classical result \(\mathbb{E}^n \not \to (\ell_6, \ell_{6})\) due to Erd{ő}s et. al. We also show a number of similar \(3\)-coloring results, as well as \(\mathbb{E}^n \not \to (\ell_3, \alpha\ell_{6889})\), where \(\alpha\) is an arbitrary positive real number. This final result answers a question of F\"uhrer and Tóth in the positive.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3049794474
source Free E- Journals
subjects Coloring
Euclidean geometry
Euclidean space
Progressions
Real numbers
title Avoiding short progressions in Euclidean Ramsey theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Avoiding%20short%20progressions%20in%20Euclidean%20Ramsey%20theory&rft.jtitle=arXiv.org&rft.au=Currier,%20Gabriel&rft.date=2024-04-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049794474%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049794474&rft_id=info:pmid/&rfr_iscdi=true