Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network

The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can hel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3827-3847
Hauptverfasser: Hasan, Mohammad Kamrul, Jahan, Nusrat, Nazri, Mohd Zakree Ahmad, Islam, Shayla, Attique Khan, Muhammad, Alzahrani, Ahmed Ibrahim, Alalwan, Nasser, Nam, Yunyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3847
container_issue 1
container_start_page 3827
container_title IEEE transactions on consumer electronics
container_volume 70
creator Hasan, Mohammad Kamrul
Jahan, Nusrat
Nazri, Mohd Zakree Ahmad
Islam, Shayla
Attique Khan, Muhammad
Alzahrani, Ahmed Ibrahim
Alalwan, Nasser
Nam, Yunyoung
description The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.
doi_str_mv 10.1109/TCE.2024.3357530
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3049491811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415079</ieee_id><sourcerecordid>3049491811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsH7cPXhY8Jw6-5XsHqW0VagKouItTJLZmtpm6yZB_Pc2tAdPc5j3eZl5GLsSMBYC3O3rZDqWIPVYKZMZBUdsJIyxiRYyO2YjAGcTBak6ZWdtuwIQ2kg7Yv2MKorYUcUXhLGpmyX3IfJJ2Gz7Drs6NLjmz96vA1bDEpuKv1Ab-lgSf8QGl7ShpuPB83f6rMt-jZFPqyUdKgambng6T97lB3-i7ifErwt24nHd0uVhnrO32fR1cp8snucPk7tFUkonu0TZ1DprUGZGeg2AhVKZKZyoVIZFWjoJVBY2w1RbtN55XXkL3iIID0IJdc5u9r3bGL57art8tTt891GbK9BOO2HFkIJ9qoyhbSP5fBvrDcbfXEA-yM13cvNBbn6Qu0Ou90hNRP_iWhjInPoDb7B1Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049491811</pqid></control><display><type>article</type><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><source>IEEE Electronic Library (IEL)</source><creator>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</creator><creatorcontrib>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</creatorcontrib><description>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3357530</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Cloud computing ; communication costs ; Computation offloading ; Computer networks ; Cybersecurity ; Data transmission ; Distributed processing ; Edge computing ; Federated learning ; Privacy ; Resource management ; Security ; security and privacy ; Smart structures ; Vehicle-to-everything ; vehicular edge computing</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3827-3847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</citedby><cites>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</cites><orcidid>0000-0001-5903-7383 ; 0000-0001-6691-4479 ; 0000-0002-0490-7799 ; 0000-0002-3318-9394 ; 0000-0001-5723-3858 ; 0000-0001-5511-0205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Jahan, Nusrat</creatorcontrib><creatorcontrib>Nazri, Mohd Zakree Ahmad</creatorcontrib><creatorcontrib>Islam, Shayla</creatorcontrib><creatorcontrib>Attique Khan, Muhammad</creatorcontrib><creatorcontrib>Alzahrani, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Alalwan, Nasser</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</description><subject>6G mobile communication</subject><subject>Cloud computing</subject><subject>communication costs</subject><subject>Computation offloading</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Data transmission</subject><subject>Distributed processing</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>Resource management</subject><subject>Security</subject><subject>security and privacy</subject><subject>Smart structures</subject><subject>Vehicle-to-everything</subject><subject>vehicular edge computing</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsH7cPXhY8Jw6-5XsHqW0VagKouItTJLZmtpm6yZB_Pc2tAdPc5j3eZl5GLsSMBYC3O3rZDqWIPVYKZMZBUdsJIyxiRYyO2YjAGcTBak6ZWdtuwIQ2kg7Yv2MKorYUcUXhLGpmyX3IfJJ2Gz7Drs6NLjmz96vA1bDEpuKv1Ab-lgSf8QGl7ShpuPB83f6rMt-jZFPqyUdKgambng6T97lB3-i7ifErwt24nHd0uVhnrO32fR1cp8snucPk7tFUkonu0TZ1DprUGZGeg2AhVKZKZyoVIZFWjoJVBY2w1RbtN55XXkL3iIID0IJdc5u9r3bGL57art8tTt891GbK9BOO2HFkIJ9qoyhbSP5fBvrDcbfXEA-yM13cvNBbn6Qu0Ou90hNRP_iWhjInPoDb7B1Gg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hasan, Mohammad Kamrul</creator><creator>Jahan, Nusrat</creator><creator>Nazri, Mohd Zakree Ahmad</creator><creator>Islam, Shayla</creator><creator>Attique Khan, Muhammad</creator><creator>Alzahrani, Ahmed Ibrahim</creator><creator>Alalwan, Nasser</creator><creator>Nam, Yunyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5903-7383</orcidid><orcidid>https://orcid.org/0000-0001-6691-4479</orcidid><orcidid>https://orcid.org/0000-0002-0490-7799</orcidid><orcidid>https://orcid.org/0000-0002-3318-9394</orcidid><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid></search><sort><creationdate>20240201</creationdate><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><author>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Cloud computing</topic><topic>communication costs</topic><topic>Computation offloading</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Data transmission</topic><topic>Distributed processing</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>Resource management</topic><topic>Security</topic><topic>security and privacy</topic><topic>Smart structures</topic><topic>Vehicle-to-everything</topic><topic>vehicular edge computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Jahan, Nusrat</creatorcontrib><creatorcontrib>Nazri, Mohd Zakree Ahmad</creatorcontrib><creatorcontrib>Islam, Shayla</creatorcontrib><creatorcontrib>Attique Khan, Muhammad</creatorcontrib><creatorcontrib>Alzahrani, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Alalwan, Nasser</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasan, Mohammad Kamrul</au><au>Jahan, Nusrat</au><au>Nazri, Mohd Zakree Ahmad</au><au>Islam, Shayla</au><au>Attique Khan, Muhammad</au><au>Alzahrani, Ahmed Ibrahim</au><au>Alalwan, Nasser</au><au>Nam, Yunyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3827</spage><epage>3847</epage><pages>3827-3847</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3357530</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5903-7383</orcidid><orcidid>https://orcid.org/0000-0001-6691-4479</orcidid><orcidid>https://orcid.org/0000-0002-0490-7799</orcidid><orcidid>https://orcid.org/0000-0002-3318-9394</orcidid><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3827-3847
issn 0098-3063
1558-4127
language eng
recordid cdi_proquest_journals_3049491811
source IEEE Electronic Library (IEL)
subjects 6G mobile communication
Cloud computing
communication costs
Computation offloading
Computer networks
Cybersecurity
Data transmission
Distributed processing
Edge computing
Federated learning
Privacy
Resource management
Security
security and privacy
Smart structures
Vehicle-to-everything
vehicular edge computing
title Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20for%20Computational%20Offloading%20and%20Resource%20Management%20of%20Vehicular%20Edge%20Computing%20in%206G-V2X%20Network&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Hasan,%20Mohammad%20Kamrul&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3827&rft.epage=3847&rft.pages=3827-3847&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3357530&rft_dat=%3Cproquest_RIE%3E3049491811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049491811&rft_id=info:pmid/&rft_ieee_id=10415079&rfr_iscdi=true