Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network
The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can hel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3827-3847 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3847 |
---|---|
container_issue | 1 |
container_start_page | 3827 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Hasan, Mohammad Kamrul Jahan, Nusrat Nazri, Mohd Zakree Ahmad Islam, Shayla Attique Khan, Muhammad Alzahrani, Ahmed Ibrahim Alalwan, Nasser Nam, Yunyoung |
description | The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication. |
doi_str_mv | 10.1109/TCE.2024.3357530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3049491811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415079</ieee_id><sourcerecordid>3049491811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsH7cPXhY8Jw6-5XsHqW0VagKouItTJLZmtpm6yZB_Pc2tAdPc5j3eZl5GLsSMBYC3O3rZDqWIPVYKZMZBUdsJIyxiRYyO2YjAGcTBak6ZWdtuwIQ2kg7Yv2MKorYUcUXhLGpmyX3IfJJ2Gz7Drs6NLjmz96vA1bDEpuKv1Ab-lgSf8QGl7ShpuPB83f6rMt-jZFPqyUdKgambng6T97lB3-i7ifErwt24nHd0uVhnrO32fR1cp8snucPk7tFUkonu0TZ1DprUGZGeg2AhVKZKZyoVIZFWjoJVBY2w1RbtN55XXkL3iIID0IJdc5u9r3bGL57art8tTt891GbK9BOO2HFkIJ9qoyhbSP5fBvrDcbfXEA-yM13cvNBbn6Qu0Ou90hNRP_iWhjInPoDb7B1Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049491811</pqid></control><display><type>article</type><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><source>IEEE Electronic Library (IEL)</source><creator>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</creator><creatorcontrib>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</creatorcontrib><description>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3357530</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Cloud computing ; communication costs ; Computation offloading ; Computer networks ; Cybersecurity ; Data transmission ; Distributed processing ; Edge computing ; Federated learning ; Privacy ; Resource management ; Security ; security and privacy ; Smart structures ; Vehicle-to-everything ; vehicular edge computing</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3827-3847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</citedby><cites>FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</cites><orcidid>0000-0001-5903-7383 ; 0000-0001-6691-4479 ; 0000-0002-0490-7799 ; 0000-0002-3318-9394 ; 0000-0001-5723-3858 ; 0000-0001-5511-0205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Jahan, Nusrat</creatorcontrib><creatorcontrib>Nazri, Mohd Zakree Ahmad</creatorcontrib><creatorcontrib>Islam, Shayla</creatorcontrib><creatorcontrib>Attique Khan, Muhammad</creatorcontrib><creatorcontrib>Alzahrani, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Alalwan, Nasser</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</description><subject>6G mobile communication</subject><subject>Cloud computing</subject><subject>communication costs</subject><subject>Computation offloading</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Data transmission</subject><subject>Distributed processing</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Privacy</subject><subject>Resource management</subject><subject>Security</subject><subject>security and privacy</subject><subject>Smart structures</subject><subject>Vehicle-to-everything</subject><subject>vehicular edge computing</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsH7cPXhY8Jw6-5XsHqW0VagKouItTJLZmtpm6yZB_Pc2tAdPc5j3eZl5GLsSMBYC3O3rZDqWIPVYKZMZBUdsJIyxiRYyO2YjAGcTBak6ZWdtuwIQ2kg7Yv2MKorYUcUXhLGpmyX3IfJJ2Gz7Drs6NLjmz96vA1bDEpuKv1Ab-lgSf8QGl7ShpuPB83f6rMt-jZFPqyUdKgambng6T97lB3-i7ifErwt24nHd0uVhnrO32fR1cp8snucPk7tFUkonu0TZ1DprUGZGeg2AhVKZKZyoVIZFWjoJVBY2w1RbtN55XXkL3iIID0IJdc5u9r3bGL57art8tTt891GbK9BOO2HFkIJ9qoyhbSP5fBvrDcbfXEA-yM13cvNBbn6Qu0Ou90hNRP_iWhjInPoDb7B1Gg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hasan, Mohammad Kamrul</creator><creator>Jahan, Nusrat</creator><creator>Nazri, Mohd Zakree Ahmad</creator><creator>Islam, Shayla</creator><creator>Attique Khan, Muhammad</creator><creator>Alzahrani, Ahmed Ibrahim</creator><creator>Alalwan, Nasser</creator><creator>Nam, Yunyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5903-7383</orcidid><orcidid>https://orcid.org/0000-0001-6691-4479</orcidid><orcidid>https://orcid.org/0000-0002-0490-7799</orcidid><orcidid>https://orcid.org/0000-0002-3318-9394</orcidid><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid></search><sort><creationdate>20240201</creationdate><title>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</title><author>Hasan, Mohammad Kamrul ; Jahan, Nusrat ; Nazri, Mohd Zakree Ahmad ; Islam, Shayla ; Attique Khan, Muhammad ; Alzahrani, Ahmed Ibrahim ; Alalwan, Nasser ; Nam, Yunyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-3868985a2752f400ab3375b91d37ab6c920ecb87a648a8f9f4df80f8a01f01313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Cloud computing</topic><topic>communication costs</topic><topic>Computation offloading</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Data transmission</topic><topic>Distributed processing</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Privacy</topic><topic>Resource management</topic><topic>Security</topic><topic>security and privacy</topic><topic>Smart structures</topic><topic>Vehicle-to-everything</topic><topic>vehicular edge computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Mohammad Kamrul</creatorcontrib><creatorcontrib>Jahan, Nusrat</creatorcontrib><creatorcontrib>Nazri, Mohd Zakree Ahmad</creatorcontrib><creatorcontrib>Islam, Shayla</creatorcontrib><creatorcontrib>Attique Khan, Muhammad</creatorcontrib><creatorcontrib>Alzahrani, Ahmed Ibrahim</creatorcontrib><creatorcontrib>Alalwan, Nasser</creatorcontrib><creatorcontrib>Nam, Yunyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hasan, Mohammad Kamrul</au><au>Jahan, Nusrat</au><au>Nazri, Mohd Zakree Ahmad</au><au>Islam, Shayla</au><au>Attique Khan, Muhammad</au><au>Alzahrani, Ahmed Ibrahim</au><au>Alalwan, Nasser</au><au>Nam, Yunyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3827</spage><epage>3847</epage><pages>3827-3847</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3357530</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5903-7383</orcidid><orcidid>https://orcid.org/0000-0001-6691-4479</orcidid><orcidid>https://orcid.org/0000-0002-0490-7799</orcidid><orcidid>https://orcid.org/0000-0002-3318-9394</orcidid><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0001-5511-0205</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3827-3847 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_proquest_journals_3049491811 |
source | IEEE Electronic Library (IEL) |
subjects | 6G mobile communication Cloud computing communication costs Computation offloading Computer networks Cybersecurity Data transmission Distributed processing Edge computing Federated learning Privacy Resource management Security security and privacy Smart structures Vehicle-to-everything vehicular edge computing |
title | Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20for%20Computational%20Offloading%20and%20Resource%20Management%20of%20Vehicular%20Edge%20Computing%20in%206G-V2X%20Network&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Hasan,%20Mohammad%20Kamrul&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3827&rft.epage=3847&rft.pages=3827-3847&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3357530&rft_dat=%3Cproquest_RIE%3E3049491811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049491811&rft_id=info:pmid/&rft_ieee_id=10415079&rfr_iscdi=true |