Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network
The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2024-05, Vol.45 (7), p.6169-6183 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6183 |
---|---|
container_issue | 7 |
container_start_page | 6169 |
container_title | Polymer composites |
container_volume | 45 |
creator | Li, Qian Rao, Ranyi Hong, Xiansheng Hu, Hanwen Li, Yu Gong, Ziyu Zheng, Yuying |
description | The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites.
Highlights
The surface of the EX‐G and CF covered by PDA generates active sites.
Fillers reduce the interface thermal resistance through chemical bonds.
Fillers surface reaction builds a 3D thermal conductive network.
3D network structure can significantly improve the TC of composites.
Only 25 wt% of hybrid fillers in a 282% increased TC of composites.
Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites. |
doi_str_mv | 10.1002/pc.28186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049185800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049185800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLk2aLmXwBgO6GNehTVMnY9vUJHXszkfwGX0So3WpqwOH7_845wfgFKMFRohc9GpBBBZ8D8wwS0WCGM_3wQyRjCSC5tkhOPJ-G0nMOZ2Bt_VGu7ZooLJdNahgXjXsxsZ2kMdV21tvgvZw8KZ7gpuxdKaCtWka7TwM9jvlg4s5WMCwcVp_vn9UptWdN7aL1vCHXYeddc_H4KAuGq9PfuccPF5frZe3yer-5m55uUoUYSlPKMlTnnGexpdUTXhJK0YprbFgJC2Y4nmVYlWLUlDOsgKXiFakjH8ypBnKcjoHZ5O3d_Zl0D7IrR1cvM1LitI8egRCkTqfKOWs907XsnemLdwoMZLfvcpeyZ9eI5pM6M40evyXkw_Lif8C-lp6ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049185800</pqid></control><display><type>article</type><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</creator><creatorcontrib>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</creatorcontrib><description>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites.
Highlights
The surface of the EX‐G and CF covered by PDA generates active sites.
Fillers reduce the interface thermal resistance through chemical bonds.
Fillers surface reaction builds a 3D thermal conductive network.
3D network structure can significantly improve the TC of composites.
Only 25 wt% of hybrid fillers in a 282% increased TC of composites.
Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28186</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aluminum oxide ; Carbon fiber reinforced plastics ; Chemical bonds ; composites ; Conducting polymers ; Conduction heating ; Conductive heat transfer ; coupling agent ; Coupling agents ; Fillers ; Graphene ; Heat conductivity ; non‐covalent functionalization ; Nylon 6 ; Polymer matrix composites ; Polymers ; Power semiconductor devices ; Surface reactions ; Thermal conductivity ; Thermal resistance ; three‐dimensional structural network</subject><ispartof>Polymer composites, 2024-05, Vol.45 (7), p.6169-6183</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</cites><orcidid>0000-0002-9976-6860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Rao, Ranyi</creatorcontrib><creatorcontrib>Hong, Xiansheng</creatorcontrib><creatorcontrib>Hu, Hanwen</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Gong, Ziyu</creatorcontrib><creatorcontrib>Zheng, Yuying</creatorcontrib><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><title>Polymer composites</title><description>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites.
Highlights
The surface of the EX‐G and CF covered by PDA generates active sites.
Fillers reduce the interface thermal resistance through chemical bonds.
Fillers surface reaction builds a 3D thermal conductive network.
3D network structure can significantly improve the TC of composites.
Only 25 wt% of hybrid fillers in a 282% increased TC of composites.
Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</description><subject>Aluminum oxide</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chemical bonds</subject><subject>composites</subject><subject>Conducting polymers</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>coupling agent</subject><subject>Coupling agents</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>non‐covalent functionalization</subject><subject>Nylon 6</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Power semiconductor devices</subject><subject>Surface reactions</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>three‐dimensional structural network</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLk2aLmXwBgO6GNehTVMnY9vUJHXszkfwGX0So3WpqwOH7_845wfgFKMFRohc9GpBBBZ8D8wwS0WCGM_3wQyRjCSC5tkhOPJ-G0nMOZ2Bt_VGu7ZooLJdNahgXjXsxsZ2kMdV21tvgvZw8KZ7gpuxdKaCtWka7TwM9jvlg4s5WMCwcVp_vn9UptWdN7aL1vCHXYeddc_H4KAuGq9PfuccPF5frZe3yer-5m55uUoUYSlPKMlTnnGexpdUTXhJK0YprbFgJC2Y4nmVYlWLUlDOsgKXiFakjH8ypBnKcjoHZ5O3d_Zl0D7IrR1cvM1LitI8egRCkTqfKOWs907XsnemLdwoMZLfvcpeyZ9eI5pM6M40evyXkw_Lif8C-lp6ig</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Li, Qian</creator><creator>Rao, Ranyi</creator><creator>Hong, Xiansheng</creator><creator>Hu, Hanwen</creator><creator>Li, Yu</creator><creator>Gong, Ziyu</creator><creator>Zheng, Yuying</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9976-6860</orcidid></search><sort><creationdate>20240510</creationdate><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><author>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chemical bonds</topic><topic>composites</topic><topic>Conducting polymers</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>coupling agent</topic><topic>Coupling agents</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>non‐covalent functionalization</topic><topic>Nylon 6</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Power semiconductor devices</topic><topic>Surface reactions</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>three‐dimensional structural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Rao, Ranyi</creatorcontrib><creatorcontrib>Hong, Xiansheng</creatorcontrib><creatorcontrib>Hu, Hanwen</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Gong, Ziyu</creatorcontrib><creatorcontrib>Zheng, Yuying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Rao, Ranyi</au><au>Hong, Xiansheng</au><au>Hu, Hanwen</au><au>Li, Yu</au><au>Gong, Ziyu</au><au>Zheng, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</atitle><jtitle>Polymer composites</jtitle><date>2024-05-10</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>6169</spage><epage>6183</epage><pages>6169-6183</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites.
Highlights
The surface of the EX‐G and CF covered by PDA generates active sites.
Fillers reduce the interface thermal resistance through chemical bonds.
Fillers surface reaction builds a 3D thermal conductive network.
3D network structure can significantly improve the TC of composites.
Only 25 wt% of hybrid fillers in a 282% increased TC of composites.
Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.28186</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9976-6860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2024-05, Vol.45 (7), p.6169-6183 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_3049185800 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Carbon fiber reinforced plastics Chemical bonds composites Conducting polymers Conduction heating Conductive heat transfer coupling agent Coupling agents Fillers Graphene Heat conductivity non‐covalent functionalization Nylon 6 Polymer matrix composites Polymers Power semiconductor devices Surface reactions Thermal conductivity Thermal resistance three‐dimensional structural network |
title | Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductive%20nylon%206%20composites%20using%20hybrid%20fillers%20to%20construct%20a%20three%E2%80%90dimensional%20thermal%20conductive%20network&rft.jtitle=Polymer%20composites&rft.au=Li,%20Qian&rft.date=2024-05-10&rft.volume=45&rft.issue=7&rft.spage=6169&rft.epage=6183&rft.pages=6169-6183&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28186&rft_dat=%3Cproquest_cross%3E3049185800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049185800&rft_id=info:pmid/&rfr_iscdi=true |