Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network

The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-05, Vol.45 (7), p.6169-6183
Hauptverfasser: Li, Qian, Rao, Ranyi, Hong, Xiansheng, Hu, Hanwen, Li, Yu, Gong, Ziyu, Zheng, Yuying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6183
container_issue 7
container_start_page 6169
container_title Polymer composites
container_volume 45
creator Li, Qian
Rao, Ranyi
Hong, Xiansheng
Hu, Hanwen
Li, Yu
Gong, Ziyu
Zheng, Yuying
description The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites. Highlights The surface of the EX‐G and CF covered by PDA generates active sites. Fillers reduce the interface thermal resistance through chemical bonds. Fillers surface reaction builds a 3D thermal conductive network. 3D network structure can significantly improve the TC of composites. Only 25 wt% of hybrid fillers in a 282% increased TC of composites. Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.
doi_str_mv 10.1002/pc.28186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049185800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049185800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLk2aLmXwBgO6GNehTVMnY9vUJHXszkfwGX0So3WpqwOH7_845wfgFKMFRohc9GpBBBZ8D8wwS0WCGM_3wQyRjCSC5tkhOPJ-G0nMOZ2Bt_VGu7ZooLJdNahgXjXsxsZ2kMdV21tvgvZw8KZ7gpuxdKaCtWka7TwM9jvlg4s5WMCwcVp_vn9UptWdN7aL1vCHXYeddc_H4KAuGq9PfuccPF5frZe3yer-5m55uUoUYSlPKMlTnnGexpdUTXhJK0YprbFgJC2Y4nmVYlWLUlDOsgKXiFakjH8ypBnKcjoHZ5O3d_Zl0D7IrR1cvM1LitI8egRCkTqfKOWs907XsnemLdwoMZLfvcpeyZ9eI5pM6M40evyXkw_Lif8C-lp6ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049185800</pqid></control><display><type>article</type><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</creator><creatorcontrib>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</creatorcontrib><description>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites. Highlights The surface of the EX‐G and CF covered by PDA generates active sites. Fillers reduce the interface thermal resistance through chemical bonds. Fillers surface reaction builds a 3D thermal conductive network. 3D network structure can significantly improve the TC of composites. Only 25 wt% of hybrid fillers in a 282% increased TC of composites. Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28186</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aluminum oxide ; Carbon fiber reinforced plastics ; Chemical bonds ; composites ; Conducting polymers ; Conduction heating ; Conductive heat transfer ; coupling agent ; Coupling agents ; Fillers ; Graphene ; Heat conductivity ; non‐covalent functionalization ; Nylon 6 ; Polymer matrix composites ; Polymers ; Power semiconductor devices ; Surface reactions ; Thermal conductivity ; Thermal resistance ; three‐dimensional structural network</subject><ispartof>Polymer composites, 2024-05, Vol.45 (7), p.6169-6183</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</cites><orcidid>0000-0002-9976-6860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Rao, Ranyi</creatorcontrib><creatorcontrib>Hong, Xiansheng</creatorcontrib><creatorcontrib>Hu, Hanwen</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Gong, Ziyu</creatorcontrib><creatorcontrib>Zheng, Yuying</creatorcontrib><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><title>Polymer composites</title><description>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites. Highlights The surface of the EX‐G and CF covered by PDA generates active sites. Fillers reduce the interface thermal resistance through chemical bonds. Fillers surface reaction builds a 3D thermal conductive network. 3D network structure can significantly improve the TC of composites. Only 25 wt% of hybrid fillers in a 282% increased TC of composites. Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</description><subject>Aluminum oxide</subject><subject>Carbon fiber reinforced plastics</subject><subject>Chemical bonds</subject><subject>composites</subject><subject>Conducting polymers</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>coupling agent</subject><subject>Coupling agents</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>non‐covalent functionalization</subject><subject>Nylon 6</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Power semiconductor devices</subject><subject>Surface reactions</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>three‐dimensional structural network</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI6CjxBw46ZjLk2aLmXwBgO6GNehTVMnY9vUJHXszkfwGX0So3WpqwOH7_845wfgFKMFRohc9GpBBBZ8D8wwS0WCGM_3wQyRjCSC5tkhOPJ-G0nMOZ2Bt_VGu7ZooLJdNahgXjXsxsZ2kMdV21tvgvZw8KZ7gpuxdKaCtWka7TwM9jvlg4s5WMCwcVp_vn9UptWdN7aL1vCHXYeddc_H4KAuGq9PfuccPF5frZe3yer-5m55uUoUYSlPKMlTnnGexpdUTXhJK0YprbFgJC2Y4nmVYlWLUlDOsgKXiFakjH8ypBnKcjoHZ5O3d_Zl0D7IrR1cvM1LitI8egRCkTqfKOWs907XsnemLdwoMZLfvcpeyZ9eI5pM6M40evyXkw_Lif8C-lp6ig</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Li, Qian</creator><creator>Rao, Ranyi</creator><creator>Hong, Xiansheng</creator><creator>Hu, Hanwen</creator><creator>Li, Yu</creator><creator>Gong, Ziyu</creator><creator>Zheng, Yuying</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9976-6860</orcidid></search><sort><creationdate>20240510</creationdate><title>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</title><author>Li, Qian ; Rao, Ranyi ; Hong, Xiansheng ; Hu, Hanwen ; Li, Yu ; Gong, Ziyu ; Zheng, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-329467664186cf26b3d5333f18524a5c69d41cf8b83657a1b03d2b39750e50793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Carbon fiber reinforced plastics</topic><topic>Chemical bonds</topic><topic>composites</topic><topic>Conducting polymers</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>coupling agent</topic><topic>Coupling agents</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>non‐covalent functionalization</topic><topic>Nylon 6</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Power semiconductor devices</topic><topic>Surface reactions</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>three‐dimensional structural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Rao, Ranyi</creatorcontrib><creatorcontrib>Hong, Xiansheng</creatorcontrib><creatorcontrib>Hu, Hanwen</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Gong, Ziyu</creatorcontrib><creatorcontrib>Zheng, Yuying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Rao, Ranyi</au><au>Hong, Xiansheng</au><au>Hu, Hanwen</au><au>Li, Yu</au><au>Gong, Ziyu</au><au>Zheng, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network</atitle><jtitle>Polymer composites</jtitle><date>2024-05-10</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>6169</spage><epage>6183</epage><pages>6169-6183</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The rapid progress in miniaturization and integration of semiconductor power devices has made heat dissipation a critical concern in the development of high‐performance semiconductor devices, thereby increasing the demands for the heat transfer efficiency of polymer composites. To address this issue, an efficient three‐dimensional (3D) heat conduction network structure is constructed in the polymer matrix by leveraging the mutual reaction of amino and epoxy groups on the surface of the filler treated by coupling during the melt mixing process, this approach leads to an enhancement in the thermal conductivity of the composites. First, the inert surfaces of graphene nanosheets (EX‐G) and carbon fibers (CF) are coated with polydopamine (PDA) to form active sites. Subsequently, the graphene (EX‐G), alumina (Al2O3), and carbon fiber (CF) are treated with an amine coupling agent (KH550) and epoxy coupling agent (KH560), respectively. Notably, at a filler content of 25 wt%, the thermal conductivity (TC) of the composites increases by approximately 282% compared to pure nylon 6. This research contributes novel insights into the field of thermally conductive polymer composites. Highlights The surface of the EX‐G and CF covered by PDA generates active sites. Fillers reduce the interface thermal resistance through chemical bonds. Fillers surface reaction builds a 3D thermal conductive network. 3D network structure can significantly improve the TC of composites. Only 25 wt% of hybrid fillers in a 282% increased TC of composites. Schematic illustration of heat flow conduction through a 3D thermally conductive structure in a composites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.28186</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9976-6860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-05, Vol.45 (7), p.6169-6183
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_3049185800
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Carbon fiber reinforced plastics
Chemical bonds
composites
Conducting polymers
Conduction heating
Conductive heat transfer
coupling agent
Coupling agents
Fillers
Graphene
Heat conductivity
non‐covalent functionalization
Nylon 6
Polymer matrix composites
Polymers
Power semiconductor devices
Surface reactions
Thermal conductivity
Thermal resistance
three‐dimensional structural network
title Thermal conductive nylon 6 composites using hybrid fillers to construct a three‐dimensional thermal conductive network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductive%20nylon%206%20composites%20using%20hybrid%20fillers%20to%20construct%20a%20three%E2%80%90dimensional%20thermal%20conductive%20network&rft.jtitle=Polymer%20composites&rft.au=Li,%20Qian&rft.date=2024-05-10&rft.volume=45&rft.issue=7&rft.spage=6169&rft.epage=6183&rft.pages=6169-6183&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28186&rft_dat=%3Cproquest_cross%3E3049185800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049185800&rft_id=info:pmid/&rfr_iscdi=true