Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators
The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In or...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2024-05, Vol.45 (7), p.6720-6732 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6732 |
---|---|
container_issue | 7 |
container_start_page | 6720 |
container_title | Polymer composites |
container_volume | 45 |
creator | Thomazi, Eduardo Roman, Celso Vanni, Jessica Silvestre Gamba, Thiago O. Zorzi, Janete E. Perottoni, Cláudio A. |
description | The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components.
Highlights
Material mimicking x‐ray attenuation similar to bone tissue.
Relation between 3D printing porosity and intensity in Hounsfield unit.
Computed tomography tests on a 3D printed anthropomorphic phantom.
Creating a 3D model from a Computed Tomography scan.
Double extruder for 3D printing of two tissue simultaneously.
Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator. |
doi_str_mv | 10.1002/pc.28229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049185734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049185734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</originalsourceid><addsrcrecordid>eNp10MtKxDAYBeAgCo6j4CMU3LjpmDRNmiyHwRsIutB1SHOhGdqmJinSnY_gM_okdqxbV_9ZfJwfDgCXCG4QhMXNoDYFKwp-BFaIlCyHhPJjsIJFVeQM8-oUnMW4nyWiFK9As1Vhan3vUnCt-f78qscktTP9Icc0hSXVMhqdKd8NPrpkYmZ9yFJjsk72o5UqjcFk3mayT03wg-98GBqnsui6sZXJh3gOTqxso7n4u2vwdnf7unvIn57vH3fbp1wVHPO8YlRbxGtMqdFIGyt5SRGhtFKSkhrVkhGrNSMUIitthbHiHEFNGNJQa4rX4GrpHYJ_H01MYu_H0M8vBYYlR4xUuJzV9aJU8DEGY8UQXCfDJBAUhx3FoMTvjjPNF_oxDzT968TLbvE_w4x4_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049185734</pqid></control><display><type>article</type><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><source>Access via Wiley Online Library</source><creator>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</creator><creatorcontrib>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</creatorcontrib><description>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components.
Highlights
Material mimicking x‐ray attenuation similar to bone tissue.
Relation between 3D printing porosity and intensity in Hounsfield unit.
Computed tomography tests on a 3D printed anthropomorphic phantom.
Creating a 3D model from a Computed Tomography scan.
Double extruder for 3D printing of two tissue simultaneously.
Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28229</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3-D printers ; ABS resins ; Acrylonitrile butadiene styrene ; additive manufacturing ; Aluminum oxide ; anthropomorphic simulator ; Anthropomorphism ; Basic oxides ; Bismuth ; Bones ; Computed tomography ; Human tissues ; Hydroxyapatite ; material extrusion ; Polymer matrix composites ; polymer‐ceramic composite ; Simulation ; Simulators ; Smoothness ; Soft tissues ; Styrenes ; Three dimensional models ; Three dimensional printing ; Tomography ; Zirconium oxides</subject><ispartof>Polymer composites, 2024-05, Vol.45 (7), p.6720-6732</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</citedby><cites>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</cites><orcidid>0000-0002-3941-9672 ; 0000-0002-4998-7315 ; 0000-0001-8613-5739 ; 0000-0002-8425-845X ; 0000-0002-2268-7718 ; 0000-0002-6471-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28229$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28229$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Thomazi, Eduardo</creatorcontrib><creatorcontrib>Roman, Celso</creatorcontrib><creatorcontrib>Vanni, Jessica Silvestre</creatorcontrib><creatorcontrib>Gamba, Thiago O.</creatorcontrib><creatorcontrib>Zorzi, Janete E.</creatorcontrib><creatorcontrib>Perottoni, Cláudio A.</creatorcontrib><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><title>Polymer composites</title><description>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components.
Highlights
Material mimicking x‐ray attenuation similar to bone tissue.
Relation between 3D printing porosity and intensity in Hounsfield unit.
Computed tomography tests on a 3D printed anthropomorphic phantom.
Creating a 3D model from a Computed Tomography scan.
Double extruder for 3D printing of two tissue simultaneously.
Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</description><subject>3-D printers</subject><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>additive manufacturing</subject><subject>Aluminum oxide</subject><subject>anthropomorphic simulator</subject><subject>Anthropomorphism</subject><subject>Basic oxides</subject><subject>Bismuth</subject><subject>Bones</subject><subject>Computed tomography</subject><subject>Human tissues</subject><subject>Hydroxyapatite</subject><subject>material extrusion</subject><subject>Polymer matrix composites</subject><subject>polymer‐ceramic composite</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Smoothness</subject><subject>Soft tissues</subject><subject>Styrenes</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><subject>Zirconium oxides</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAYBeAgCo6j4CMU3LjpmDRNmiyHwRsIutB1SHOhGdqmJinSnY_gM_okdqxbV_9ZfJwfDgCXCG4QhMXNoDYFKwp-BFaIlCyHhPJjsIJFVeQM8-oUnMW4nyWiFK9As1Vhan3vUnCt-f78qscktTP9Icc0hSXVMhqdKd8NPrpkYmZ9yFJjsk72o5UqjcFk3mayT03wg-98GBqnsui6sZXJh3gOTqxso7n4u2vwdnf7unvIn57vH3fbp1wVHPO8YlRbxGtMqdFIGyt5SRGhtFKSkhrVkhGrNSMUIitthbHiHEFNGNJQa4rX4GrpHYJ_H01MYu_H0M8vBYYlR4xUuJzV9aJU8DEGY8UQXCfDJBAUhx3FoMTvjjPNF_oxDzT968TLbvE_w4x4_A</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Thomazi, Eduardo</creator><creator>Roman, Celso</creator><creator>Vanni, Jessica Silvestre</creator><creator>Gamba, Thiago O.</creator><creator>Zorzi, Janete E.</creator><creator>Perottoni, Cláudio A.</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3941-9672</orcidid><orcidid>https://orcid.org/0000-0002-4998-7315</orcidid><orcidid>https://orcid.org/0000-0001-8613-5739</orcidid><orcidid>https://orcid.org/0000-0002-8425-845X</orcidid><orcidid>https://orcid.org/0000-0002-2268-7718</orcidid><orcidid>https://orcid.org/0000-0002-6471-0672</orcidid></search><sort><creationdate>20240510</creationdate><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><author>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>additive manufacturing</topic><topic>Aluminum oxide</topic><topic>anthropomorphic simulator</topic><topic>Anthropomorphism</topic><topic>Basic oxides</topic><topic>Bismuth</topic><topic>Bones</topic><topic>Computed tomography</topic><topic>Human tissues</topic><topic>Hydroxyapatite</topic><topic>material extrusion</topic><topic>Polymer matrix composites</topic><topic>polymer‐ceramic composite</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Smoothness</topic><topic>Soft tissues</topic><topic>Styrenes</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomazi, Eduardo</creatorcontrib><creatorcontrib>Roman, Celso</creatorcontrib><creatorcontrib>Vanni, Jessica Silvestre</creatorcontrib><creatorcontrib>Gamba, Thiago O.</creatorcontrib><creatorcontrib>Zorzi, Janete E.</creatorcontrib><creatorcontrib>Perottoni, Cláudio A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomazi, Eduardo</au><au>Roman, Celso</au><au>Vanni, Jessica Silvestre</au><au>Gamba, Thiago O.</au><au>Zorzi, Janete E.</au><au>Perottoni, Cláudio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</atitle><jtitle>Polymer composites</jtitle><date>2024-05-10</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>6720</spage><epage>6732</epage><pages>6720-6732</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components.
Highlights
Material mimicking x‐ray attenuation similar to bone tissue.
Relation between 3D printing porosity and intensity in Hounsfield unit.
Computed tomography tests on a 3D printed anthropomorphic phantom.
Creating a 3D model from a Computed Tomography scan.
Double extruder for 3D printing of two tissue simultaneously.
Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.28229</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3941-9672</orcidid><orcidid>https://orcid.org/0000-0002-4998-7315</orcidid><orcidid>https://orcid.org/0000-0001-8613-5739</orcidid><orcidid>https://orcid.org/0000-0002-8425-845X</orcidid><orcidid>https://orcid.org/0000-0002-2268-7718</orcidid><orcidid>https://orcid.org/0000-0002-6471-0672</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2024-05, Vol.45 (7), p.6720-6732 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_3049185734 |
source | Access via Wiley Online Library |
subjects | 3-D printers ABS resins Acrylonitrile butadiene styrene additive manufacturing Aluminum oxide anthropomorphic simulator Anthropomorphism Basic oxides Bismuth Bones Computed tomography Human tissues Hydroxyapatite material extrusion Polymer matrix composites polymer‐ceramic composite Simulation Simulators Smoothness Soft tissues Styrenes Three dimensional models Three dimensional printing Tomography Zirconium oxides |
title | Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acrylonitrile%E2%80%90butadiene%E2%80%90styrene%E2%80%90based%20composites%20for%20the%20manufacture%20of%20anthropomorphic%20simulators&rft.jtitle=Polymer%20composites&rft.au=Thomazi,%20Eduardo&rft.date=2024-05-10&rft.volume=45&rft.issue=7&rft.spage=6720&rft.epage=6732&rft.pages=6720-6732&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28229&rft_dat=%3Cproquest_cross%3E3049185734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049185734&rft_id=info:pmid/&rfr_iscdi=true |