Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators

The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-05, Vol.45 (7), p.6720-6732
Hauptverfasser: Thomazi, Eduardo, Roman, Celso, Vanni, Jessica Silvestre, Gamba, Thiago O., Zorzi, Janete E., Perottoni, Cláudio A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6732
container_issue 7
container_start_page 6720
container_title Polymer composites
container_volume 45
creator Thomazi, Eduardo
Roman, Celso
Vanni, Jessica Silvestre
Gamba, Thiago O.
Zorzi, Janete E.
Perottoni, Cláudio A.
description The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components. Highlights Material mimicking x‐ray attenuation similar to bone tissue. Relation between 3D printing porosity and intensity in Hounsfield unit. Computed tomography tests on a 3D printed anthropomorphic phantom. Creating a 3D model from a Computed Tomography scan. Double extruder for 3D printing of two tissue simultaneously. Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.
doi_str_mv 10.1002/pc.28229
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049185734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049185734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</originalsourceid><addsrcrecordid>eNp10MtKxDAYBeAgCo6j4CMU3LjpmDRNmiyHwRsIutB1SHOhGdqmJinSnY_gM_okdqxbV_9ZfJwfDgCXCG4QhMXNoDYFKwp-BFaIlCyHhPJjsIJFVeQM8-oUnMW4nyWiFK9As1Vhan3vUnCt-f78qscktTP9Icc0hSXVMhqdKd8NPrpkYmZ9yFJjsk72o5UqjcFk3mayT03wg-98GBqnsui6sZXJh3gOTqxso7n4u2vwdnf7unvIn57vH3fbp1wVHPO8YlRbxGtMqdFIGyt5SRGhtFKSkhrVkhGrNSMUIitthbHiHEFNGNJQa4rX4GrpHYJ_H01MYu_H0M8vBYYlR4xUuJzV9aJU8DEGY8UQXCfDJBAUhx3FoMTvjjPNF_oxDzT968TLbvE_w4x4_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049185734</pqid></control><display><type>article</type><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><source>Access via Wiley Online Library</source><creator>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</creator><creatorcontrib>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</creatorcontrib><description>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components. Highlights Material mimicking x‐ray attenuation similar to bone tissue. Relation between 3D printing porosity and intensity in Hounsfield unit. Computed tomography tests on a 3D printed anthropomorphic phantom. Creating a 3D model from a Computed Tomography scan. Double extruder for 3D printing of two tissue simultaneously. Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28229</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; ABS resins ; Acrylonitrile butadiene styrene ; additive manufacturing ; Aluminum oxide ; anthropomorphic simulator ; Anthropomorphism ; Basic oxides ; Bismuth ; Bones ; Computed tomography ; Human tissues ; Hydroxyapatite ; material extrusion ; Polymer matrix composites ; polymer‐ceramic composite ; Simulation ; Simulators ; Smoothness ; Soft tissues ; Styrenes ; Three dimensional models ; Three dimensional printing ; Tomography ; Zirconium oxides</subject><ispartof>Polymer composites, 2024-05, Vol.45 (7), p.6720-6732</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</citedby><cites>FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</cites><orcidid>0000-0002-3941-9672 ; 0000-0002-4998-7315 ; 0000-0001-8613-5739 ; 0000-0002-8425-845X ; 0000-0002-2268-7718 ; 0000-0002-6471-0672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28229$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28229$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Thomazi, Eduardo</creatorcontrib><creatorcontrib>Roman, Celso</creatorcontrib><creatorcontrib>Vanni, Jessica Silvestre</creatorcontrib><creatorcontrib>Gamba, Thiago O.</creatorcontrib><creatorcontrib>Zorzi, Janete E.</creatorcontrib><creatorcontrib>Perottoni, Cláudio A.</creatorcontrib><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><title>Polymer composites</title><description>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components. Highlights Material mimicking x‐ray attenuation similar to bone tissue. Relation between 3D printing porosity and intensity in Hounsfield unit. Computed tomography tests on a 3D printed anthropomorphic phantom. Creating a 3D model from a Computed Tomography scan. Double extruder for 3D printing of two tissue simultaneously. Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</description><subject>3-D printers</subject><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>additive manufacturing</subject><subject>Aluminum oxide</subject><subject>anthropomorphic simulator</subject><subject>Anthropomorphism</subject><subject>Basic oxides</subject><subject>Bismuth</subject><subject>Bones</subject><subject>Computed tomography</subject><subject>Human tissues</subject><subject>Hydroxyapatite</subject><subject>material extrusion</subject><subject>Polymer matrix composites</subject><subject>polymer‐ceramic composite</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Smoothness</subject><subject>Soft tissues</subject><subject>Styrenes</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><subject>Zirconium oxides</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAYBeAgCo6j4CMU3LjpmDRNmiyHwRsIutB1SHOhGdqmJinSnY_gM_okdqxbV_9ZfJwfDgCXCG4QhMXNoDYFKwp-BFaIlCyHhPJjsIJFVeQM8-oUnMW4nyWiFK9As1Vhan3vUnCt-f78qscktTP9Icc0hSXVMhqdKd8NPrpkYmZ9yFJjsk72o5UqjcFk3mayT03wg-98GBqnsui6sZXJh3gOTqxso7n4u2vwdnf7unvIn57vH3fbp1wVHPO8YlRbxGtMqdFIGyt5SRGhtFKSkhrVkhGrNSMUIitthbHiHEFNGNJQa4rX4GrpHYJ_H01MYu_H0M8vBYYlR4xUuJzV9aJU8DEGY8UQXCfDJBAUhx3FoMTvjjPNF_oxDzT968TLbvE_w4x4_A</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Thomazi, Eduardo</creator><creator>Roman, Celso</creator><creator>Vanni, Jessica Silvestre</creator><creator>Gamba, Thiago O.</creator><creator>Zorzi, Janete E.</creator><creator>Perottoni, Cláudio A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3941-9672</orcidid><orcidid>https://orcid.org/0000-0002-4998-7315</orcidid><orcidid>https://orcid.org/0000-0001-8613-5739</orcidid><orcidid>https://orcid.org/0000-0002-8425-845X</orcidid><orcidid>https://orcid.org/0000-0002-2268-7718</orcidid><orcidid>https://orcid.org/0000-0002-6471-0672</orcidid></search><sort><creationdate>20240510</creationdate><title>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</title><author>Thomazi, Eduardo ; Roman, Celso ; Vanni, Jessica Silvestre ; Gamba, Thiago O. ; Zorzi, Janete E. ; Perottoni, Cláudio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-786df19b366ed1defa94615667ca65b1ba85fdd85601faf733c9910d581d0dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>additive manufacturing</topic><topic>Aluminum oxide</topic><topic>anthropomorphic simulator</topic><topic>Anthropomorphism</topic><topic>Basic oxides</topic><topic>Bismuth</topic><topic>Bones</topic><topic>Computed tomography</topic><topic>Human tissues</topic><topic>Hydroxyapatite</topic><topic>material extrusion</topic><topic>Polymer matrix composites</topic><topic>polymer‐ceramic composite</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Smoothness</topic><topic>Soft tissues</topic><topic>Styrenes</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomazi, Eduardo</creatorcontrib><creatorcontrib>Roman, Celso</creatorcontrib><creatorcontrib>Vanni, Jessica Silvestre</creatorcontrib><creatorcontrib>Gamba, Thiago O.</creatorcontrib><creatorcontrib>Zorzi, Janete E.</creatorcontrib><creatorcontrib>Perottoni, Cláudio A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomazi, Eduardo</au><au>Roman, Celso</au><au>Vanni, Jessica Silvestre</au><au>Gamba, Thiago O.</au><au>Zorzi, Janete E.</au><au>Perottoni, Cláudio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators</atitle><jtitle>Polymer composites</jtitle><date>2024-05-10</date><risdate>2024</risdate><volume>45</volume><issue>7</issue><spage>6720</spage><epage>6732</epage><pages>6720-6732</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components. Highlights Material mimicking x‐ray attenuation similar to bone tissue. Relation between 3D printing porosity and intensity in Hounsfield unit. Computed tomography tests on a 3D printed anthropomorphic phantom. Creating a 3D model from a Computed Tomography scan. Double extruder for 3D printing of two tissue simultaneously. Manufacturing, 3D printing and analysis of composite filaments and the anthropomorphic simulator.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.28229</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3941-9672</orcidid><orcidid>https://orcid.org/0000-0002-4998-7315</orcidid><orcidid>https://orcid.org/0000-0001-8613-5739</orcidid><orcidid>https://orcid.org/0000-0002-8425-845X</orcidid><orcidid>https://orcid.org/0000-0002-2268-7718</orcidid><orcidid>https://orcid.org/0000-0002-6471-0672</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-05, Vol.45 (7), p.6720-6732
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_3049185734
source Access via Wiley Online Library
subjects 3-D printers
ABS resins
Acrylonitrile butadiene styrene
additive manufacturing
Aluminum oxide
anthropomorphic simulator
Anthropomorphism
Basic oxides
Bismuth
Bones
Computed tomography
Human tissues
Hydroxyapatite
material extrusion
Polymer matrix composites
polymer‐ceramic composite
Simulation
Simulators
Smoothness
Soft tissues
Styrenes
Three dimensional models
Three dimensional printing
Tomography
Zirconium oxides
title Acrylonitrile‐butadiene‐styrene‐based composites for the manufacture of anthropomorphic simulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acrylonitrile%E2%80%90butadiene%E2%80%90styrene%E2%80%90based%20composites%20for%20the%20manufacture%20of%20anthropomorphic%20simulators&rft.jtitle=Polymer%20composites&rft.au=Thomazi,%20Eduardo&rft.date=2024-05-10&rft.volume=45&rft.issue=7&rft.spage=6720&rft.epage=6732&rft.pages=6720-6732&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28229&rft_dat=%3Cproquest_cross%3E3049185734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049185734&rft_id=info:pmid/&rfr_iscdi=true