A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type
This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics and Applications 2024-01, Vol.15 (1), p.463-482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 1 |
container_start_page | 463 |
container_title | Communications in Mathematics and Applications |
container_volume | 15 |
creator | Kumar, Awinash Gowrisankar, S. |
description | This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems. |
doi_str_mv | 10.26713/cma.v15i1.2506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049155817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049155817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-480c0f45098a861da6e34595ae5ce54e69fb187858078b3e95da0fdb96d627953</originalsourceid><addsrcrecordid>eNotkF1rwjAUhsPYYOK83m1g19Wkab4uxekmiBvMXZc0PdkirdG0Ffz3q3VX7-G8D4fDg9AzJdNUSMpmtjbTM-WeTlNOxB0aES15ogSR98MsEq4Jf0STptkTQlItMsn0CJVzvA1nqPC2qyF6ayr8ZX-hBuxCxDtfQ7KKxrY-HPrq08TW97k-tPATA371zkGEw7Bcnjpz5XBwV9AUofIW7y5HeEIPzlQNTP5zjL5Xy93iPdl8vK0X801iKWdtkiliics40cooQUsjgGVccwPcAs9AaFdQJRVXRKqCgealIa4stChFKjVnY_Ryu3uM4dRB0-b70MX-8SZnJNOUc0VlT81ulI2haSK4_Bh9beIlpyQfbOa9zXywmV9tsj8Pj2g9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049155817</pqid></control><display><type>article</type><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, Awinash ; Gowrisankar, S.</creator><creatorcontrib>Kumar, Awinash ; Gowrisankar, S.</creatorcontrib><description>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v15i1.2506</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Approximation ; Differential equations ; Error analysis ; Finite difference method ; Fractional calculus ; Numerical methods ; Stability analysis</subject><ispartof>Communications in Mathematics and Applications, 2024-01, Vol.15 (1), p.463-482</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-1975-8370 ; 0000-0002-0007-0477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumar, Awinash</creatorcontrib><creatorcontrib>Gowrisankar, S.</creatorcontrib><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><title>Communications in Mathematics and Applications</title><description>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Fractional calculus</subject><subject>Numerical methods</subject><subject>Stability analysis</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkF1rwjAUhsPYYOK83m1g19Wkab4uxekmiBvMXZc0PdkirdG0Ffz3q3VX7-G8D4fDg9AzJdNUSMpmtjbTM-WeTlNOxB0aES15ogSR98MsEq4Jf0STptkTQlItMsn0CJVzvA1nqPC2qyF6ayr8ZX-hBuxCxDtfQ7KKxrY-HPrq08TW97k-tPATA371zkGEw7Bcnjpz5XBwV9AUofIW7y5HeEIPzlQNTP5zjL5Xy93iPdl8vK0X801iKWdtkiliics40cooQUsjgGVccwPcAs9AaFdQJRVXRKqCgealIa4stChFKjVnY_Ryu3uM4dRB0-b70MX-8SZnJNOUc0VlT81ulI2haSK4_Bh9beIlpyQfbOa9zXywmV9tsj8Pj2g9</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kumar, Awinash</creator><creator>Gowrisankar, S.</creator><general>RGN Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0000-1975-8370</orcidid><orcidid>https://orcid.org/0000-0002-0007-0477</orcidid></search><sort><creationdate>20240101</creationdate><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><author>Kumar, Awinash ; Gowrisankar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-480c0f45098a861da6e34595ae5ce54e69fb187858078b3e95da0fdb96d627953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Fractional calculus</topic><topic>Numerical methods</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Awinash</creatorcontrib><creatorcontrib>Gowrisankar, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Awinash</au><au>Gowrisankar, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>463</spage><epage>482</epage><pages>463-482</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v15i1.2506</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0000-1975-8370</orcidid><orcidid>https://orcid.org/0000-0002-0007-0477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-5905 |
ispartof | Communications in Mathematics and Applications, 2024-01, Vol.15 (1), p.463-482 |
issn | 0976-5905 0975-8607 |
language | eng |
recordid | cdi_proquest_journals_3049155817 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Differential equations Error analysis Finite difference method Fractional calculus Numerical methods Stability analysis |
title | A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Numerical%20Scheme%20for%20Time-Fractional%20Partial%20Integro%20Differential%20Equation%20of%20Parabolic%20Type&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Kumar,%20Awinash&rft.date=2024-01-01&rft.volume=15&rft.issue=1&rft.spage=463&rft.epage=482&rft.pages=463-482&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v15i1.2506&rft_dat=%3Cproquest_cross%3E3049155817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049155817&rft_id=info:pmid/&rfr_iscdi=true |