A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type

This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics and Applications 2024-01, Vol.15 (1), p.463-482
Hauptverfasser: Kumar, Awinash, Gowrisankar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 1
container_start_page 463
container_title Communications in Mathematics and Applications
container_volume 15
creator Kumar, Awinash
Gowrisankar, S.
description This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.
doi_str_mv 10.26713/cma.v15i1.2506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049155817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049155817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-480c0f45098a861da6e34595ae5ce54e69fb187858078b3e95da0fdb96d627953</originalsourceid><addsrcrecordid>eNotkF1rwjAUhsPYYOK83m1g19Wkab4uxekmiBvMXZc0PdkirdG0Ffz3q3VX7-G8D4fDg9AzJdNUSMpmtjbTM-WeTlNOxB0aES15ogSR98MsEq4Jf0STptkTQlItMsn0CJVzvA1nqPC2qyF6ayr8ZX-hBuxCxDtfQ7KKxrY-HPrq08TW97k-tPATA371zkGEw7Bcnjpz5XBwV9AUofIW7y5HeEIPzlQNTP5zjL5Xy93iPdl8vK0X801iKWdtkiliics40cooQUsjgGVccwPcAs9AaFdQJRVXRKqCgealIa4stChFKjVnY_Ryu3uM4dRB0-b70MX-8SZnJNOUc0VlT81ulI2haSK4_Bh9beIlpyQfbOa9zXywmV9tsj8Pj2g9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049155817</pqid></control><display><type>article</type><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, Awinash ; Gowrisankar, S.</creator><creatorcontrib>Kumar, Awinash ; Gowrisankar, S.</creatorcontrib><description>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</description><identifier>ISSN: 0976-5905</identifier><identifier>EISSN: 0975-8607</identifier><identifier>DOI: 10.26713/cma.v15i1.2506</identifier><language>eng</language><publisher>Kingsville: RGN Publications</publisher><subject>Approximation ; Differential equations ; Error analysis ; Finite difference method ; Fractional calculus ; Numerical methods ; Stability analysis</subject><ispartof>Communications in Mathematics and Applications, 2024-01, Vol.15 (1), p.463-482</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-1975-8370 ; 0000-0002-0007-0477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kumar, Awinash</creatorcontrib><creatorcontrib>Gowrisankar, S.</creatorcontrib><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><title>Communications in Mathematics and Applications</title><description>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</description><subject>Approximation</subject><subject>Differential equations</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Fractional calculus</subject><subject>Numerical methods</subject><subject>Stability analysis</subject><issn>0976-5905</issn><issn>0975-8607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkF1rwjAUhsPYYOK83m1g19Wkab4uxekmiBvMXZc0PdkirdG0Ffz3q3VX7-G8D4fDg9AzJdNUSMpmtjbTM-WeTlNOxB0aES15ogSR98MsEq4Jf0STptkTQlItMsn0CJVzvA1nqPC2qyF6ayr8ZX-hBuxCxDtfQ7KKxrY-HPrq08TW97k-tPATA371zkGEw7Bcnjpz5XBwV9AUofIW7y5HeEIPzlQNTP5zjL5Xy93iPdl8vK0X801iKWdtkiliics40cooQUsjgGVccwPcAs9AaFdQJRVXRKqCgealIa4stChFKjVnY_Ryu3uM4dRB0-b70MX-8SZnJNOUc0VlT81ulI2haSK4_Bh9beIlpyQfbOa9zXywmV9tsj8Pj2g9</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kumar, Awinash</creator><creator>Gowrisankar, S.</creator><general>RGN Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0000-1975-8370</orcidid><orcidid>https://orcid.org/0000-0002-0007-0477</orcidid></search><sort><creationdate>20240101</creationdate><title>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</title><author>Kumar, Awinash ; Gowrisankar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-480c0f45098a861da6e34595ae5ce54e69fb187858078b3e95da0fdb96d627953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Differential equations</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Fractional calculus</topic><topic>Numerical methods</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Awinash</creatorcontrib><creatorcontrib>Gowrisankar, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications in Mathematics and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Awinash</au><au>Gowrisankar, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type</atitle><jtitle>Communications in Mathematics and Applications</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>463</spage><epage>482</epage><pages>463-482</pages><issn>0976-5905</issn><eissn>0975-8607</eissn><abstract>This work is devoted to study numerical methods for time-fractional integro-differential equations. In order to compute the approximate solutions for highly non-linear or linear forms of various time-fractional integro-differential models, we apply the extended and more generalized finite difference methods. First order and second order spacial derivatives are approximated by the central difference. The integral terms and Capto fractional terms are approximated by the composite trapezoidal rule. Particularly we derive error estimation and stability analysis of the finite difference method for a Volterra type fractional differential equation. Illustrative examples are provided in support of the proposed methods with three distinct problems.</abstract><cop>Kingsville</cop><pub>RGN Publications</pub><doi>10.26713/cma.v15i1.2506</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0000-1975-8370</orcidid><orcidid>https://orcid.org/0000-0002-0007-0477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0976-5905
ispartof Communications in Mathematics and Applications, 2024-01, Vol.15 (1), p.463-482
issn 0976-5905
0975-8607
language eng
recordid cdi_proquest_journals_3049155817
source EZB-FREE-00999 freely available EZB journals
subjects Approximation
Differential equations
Error analysis
Finite difference method
Fractional calculus
Numerical methods
Stability analysis
title A Novel Numerical Scheme for Time-Fractional Partial Integro Differential Equation of Parabolic Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Numerical%20Scheme%20for%20Time-Fractional%20Partial%20Integro%20Differential%20Equation%20of%20Parabolic%20Type&rft.jtitle=Communications%20in%20Mathematics%20and%20Applications&rft.au=Kumar,%20Awinash&rft.date=2024-01-01&rft.volume=15&rft.issue=1&rft.spage=463&rft.epage=482&rft.pages=463-482&rft.issn=0976-5905&rft.eissn=0975-8607&rft_id=info:doi/10.26713/cma.v15i1.2506&rft_dat=%3Cproquest_cross%3E3049155817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049155817&rft_id=info:pmid/&rfr_iscdi=true