Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance

Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358
Hauptverfasser: Deng, Wenhui, Wu, Tianjing, Wu, Yufeng, Chen, Fang, Bai, Yansong, Zou, Xiaoqing, Jing, Mingjun, Deng, Wentao, Hou, Hongshuai, Wang, Xianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1358
container_issue 17
container_start_page 1349
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Deng, Wenhui
Wu, Tianjing
Wu, Yufeng
Chen, Fang
Bai, Yansong
Zou, Xiaoqing
Jing, Mingjun
Deng, Wentao
Hou, Hongshuai
Wang, Xianyou
description Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N x ( x = 2 and 4) are systematically designed and studied; the Co-N 2 model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O 2 , 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N 2 structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N 2 units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N 2 active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec −1 ), superior to that of the porphyrin organic covalent material with Co-N 4 active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm −2 , surpassing that of the PVA hydrogel. The coordination environment of Co-N x models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N 2 ) can efficiently reduce the reaction energy barrier for ORR and OER.
doi_str_mv 10.1039/d4ta00849a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049108868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049108868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</originalsourceid><addsrcrecordid>eNpFkEFLAzEQRoMoWGov3oWAN2E12WTTybFUq0LVSz0vMZtoyu6mJlmh_960lTqXGYY3H8ND6JKSW0qYvGt4UoQAl-oEjUpSkWLKpTg9zgDnaBLjmuQCQoSUI-RfnA5e-9g5jTvfDK1KzvfYW5y-DJ774hV_-L5x_SeOKQw6DcFg122C_zFxz3RDm1xhh17vLlWLTWt0yqEqqXabcu7GBOtDp3ptLtCZVW00k78-Ru-Lh9X8qVi-PT7PZ8tCl0BTYZspSGNISafcaKpAsKZkLC81A1Epy0vFKgugWQW8krJpShBUKCu1ZIawMbo-5OZHvwcTU732Q8jfxZoRLikBEJCpmwOVHcQYjK03wXUqbGtK6p3T-p6vZnunswxfHeAQ9ZH7d85-AU2AdLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049108868</pqid></control><display><type>article</type><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</creator><creatorcontrib>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</creatorcontrib><description>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N x ( x = 2 and 4) are systematically designed and studied; the Co-N 2 model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O 2 , 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N 2 structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N 2 units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N 2 active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec −1 ), superior to that of the porphyrin organic covalent material with Co-N 4 active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm −2 , surpassing that of the PVA hydrogel. The coordination environment of Co-N x models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N 2 ) can efficiently reduce the reaction energy barrier for ORR and OER.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00849a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adhesion ; Batteries ; Bonding ; Catalysts ; Chemical reduction ; Cobalt ; Electrochemical analysis ; Electrochemistry ; Hydrogels ; Metal air batteries ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Porphyrins ; Pyrolysis ; Water uptake ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</citedby><cites>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</cites><orcidid>0000-0003-1243-8440 ; 0000-0001-8888-6405 ; 0000-0001-8201-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Deng, Wenhui</creatorcontrib><creatorcontrib>Wu, Tianjing</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Bai, Yansong</creatorcontrib><creatorcontrib>Zou, Xiaoqing</creatorcontrib><creatorcontrib>Jing, Mingjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N x ( x = 2 and 4) are systematically designed and studied; the Co-N 2 model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O 2 , 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N 2 structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N 2 units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N 2 active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec −1 ), superior to that of the porphyrin organic covalent material with Co-N 4 active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm −2 , surpassing that of the PVA hydrogel. The coordination environment of Co-N x models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N 2 ) can efficiently reduce the reaction energy barrier for ORR and OER.</description><subject>Adhesion</subject><subject>Batteries</subject><subject>Bonding</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Hydrogels</subject><subject>Metal air batteries</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Porphyrins</subject><subject>Pyrolysis</subject><subject>Water uptake</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQRoMoWGov3oWAN2E12WTTybFUq0LVSz0vMZtoyu6mJlmh_960lTqXGYY3H8ND6JKSW0qYvGt4UoQAl-oEjUpSkWLKpTg9zgDnaBLjmuQCQoSUI-RfnA5e-9g5jTvfDK1KzvfYW5y-DJ774hV_-L5x_SeOKQw6DcFg122C_zFxz3RDm1xhh17vLlWLTWt0yqEqqXabcu7GBOtDp3ptLtCZVW00k78-Ru-Lh9X8qVi-PT7PZ8tCl0BTYZspSGNISafcaKpAsKZkLC81A1Epy0vFKgugWQW8krJpShBUKCu1ZIawMbo-5OZHvwcTU732Q8jfxZoRLikBEJCpmwOVHcQYjK03wXUqbGtK6p3T-p6vZnunswxfHeAQ9ZH7d85-AU2AdLA</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Deng, Wenhui</creator><creator>Wu, Tianjing</creator><creator>Wu, Yufeng</creator><creator>Chen, Fang</creator><creator>Bai, Yansong</creator><creator>Zou, Xiaoqing</creator><creator>Jing, Mingjun</creator><creator>Deng, Wentao</creator><creator>Hou, Hongshuai</creator><creator>Wang, Xianyou</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1243-8440</orcidid><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></search><sort><creationdate>20240430</creationdate><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><author>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesion</topic><topic>Batteries</topic><topic>Bonding</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Hydrogels</topic><topic>Metal air batteries</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Porphyrins</topic><topic>Pyrolysis</topic><topic>Water uptake</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wenhui</creatorcontrib><creatorcontrib>Wu, Tianjing</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Bai, Yansong</creatorcontrib><creatorcontrib>Zou, Xiaoqing</creatorcontrib><creatorcontrib>Jing, Mingjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wenhui</au><au>Wu, Tianjing</au><au>Wu, Yufeng</au><au>Chen, Fang</au><au>Bai, Yansong</au><au>Zou, Xiaoqing</au><au>Jing, Mingjun</au><au>Deng, Wentao</au><au>Hou, Hongshuai</au><au>Wang, Xianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-30</date><risdate>2024</risdate><volume>12</volume><issue>17</issue><spage>1349</spage><epage>1358</epage><pages>1349-1358</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N x ( x = 2 and 4) are systematically designed and studied; the Co-N 2 model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O 2 , 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N 2 structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N 2 units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N 2 active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec −1 ), superior to that of the porphyrin organic covalent material with Co-N 4 active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm −2 , surpassing that of the PVA hydrogel. The coordination environment of Co-N x models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N 2 ) can efficiently reduce the reaction energy barrier for ORR and OER.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00849a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1243-8440</orcidid><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3049108868
source Royal Society Of Chemistry Journals 2008-
subjects Adhesion
Batteries
Bonding
Catalysts
Chemical reduction
Cobalt
Electrochemical analysis
Electrochemistry
Hydrogels
Metal air batteries
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Porphyrins
Pyrolysis
Water uptake
Zinc
Zinc-oxygen batteries
title Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcosmic%20modulation%20of%20the%20Co-N%20bonding%20structure%20improves%20the%20multi-functional%20electrocatalytic%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Deng,%20Wenhui&rft.date=2024-04-30&rft.volume=12&rft.issue=17&rft.spage=1349&rft.epage=1358&rft.pages=1349-1358&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00849a&rft_dat=%3Cproquest_cross%3E3049108868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049108868&rft_id=info:pmid/&rfr_iscdi=true