Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance
Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, t...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1358 |
---|---|
container_issue | 17 |
container_start_page | 1349 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Deng, Wenhui Wu, Tianjing Wu, Yufeng Chen, Fang Bai, Yansong Zou, Xiaoqing Jing, Mingjun Deng, Wentao Hou, Hongshuai Wang, Xianyou |
description | Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N
x
(
x
= 2 and 4) are systematically designed and studied; the Co-N
2
model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O
2
, 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N
2
structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N
2
units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N
2
active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec
−1
), superior to that of the porphyrin organic covalent material with Co-N
4
active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm
−2
, surpassing that of the PVA hydrogel.
The coordination environment of Co-N
x
models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N
2
) can efficiently reduce the reaction energy barrier for ORR and OER. |
doi_str_mv | 10.1039/d4ta00849a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049108868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049108868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</originalsourceid><addsrcrecordid>eNpFkEFLAzEQRoMoWGov3oWAN2E12WTTybFUq0LVSz0vMZtoyu6mJlmh_960lTqXGYY3H8ND6JKSW0qYvGt4UoQAl-oEjUpSkWLKpTg9zgDnaBLjmuQCQoSUI-RfnA5e-9g5jTvfDK1KzvfYW5y-DJ774hV_-L5x_SeOKQw6DcFg122C_zFxz3RDm1xhh17vLlWLTWt0yqEqqXabcu7GBOtDp3ptLtCZVW00k78-Ru-Lh9X8qVi-PT7PZ8tCl0BTYZspSGNISafcaKpAsKZkLC81A1Epy0vFKgugWQW8krJpShBUKCu1ZIawMbo-5OZHvwcTU732Q8jfxZoRLikBEJCpmwOVHcQYjK03wXUqbGtK6p3T-p6vZnunswxfHeAQ9ZH7d85-AU2AdLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049108868</pqid></control><display><type>article</type><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</creator><creatorcontrib>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</creatorcontrib><description>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N
x
(
x
= 2 and 4) are systematically designed and studied; the Co-N
2
model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O
2
, 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N
2
structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N
2
units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N
2
active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec
−1
), superior to that of the porphyrin organic covalent material with Co-N
4
active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm
−2
, surpassing that of the PVA hydrogel.
The coordination environment of Co-N
x
models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N
2
) can efficiently reduce the reaction energy barrier for ORR and OER.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00849a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adhesion ; Batteries ; Bonding ; Catalysts ; Chemical reduction ; Cobalt ; Electrochemical analysis ; Electrochemistry ; Hydrogels ; Metal air batteries ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Porphyrins ; Pyrolysis ; Water uptake ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</citedby><cites>FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</cites><orcidid>0000-0003-1243-8440 ; 0000-0001-8888-6405 ; 0000-0001-8201-4614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Deng, Wenhui</creatorcontrib><creatorcontrib>Wu, Tianjing</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Bai, Yansong</creatorcontrib><creatorcontrib>Zou, Xiaoqing</creatorcontrib><creatorcontrib>Jing, Mingjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N
x
(
x
= 2 and 4) are systematically designed and studied; the Co-N
2
model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O
2
, 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N
2
structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N
2
units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N
2
active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec
−1
), superior to that of the porphyrin organic covalent material with Co-N
4
active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm
−2
, surpassing that of the PVA hydrogel.
The coordination environment of Co-N
x
models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N
2
) can efficiently reduce the reaction energy barrier for ORR and OER.</description><subject>Adhesion</subject><subject>Batteries</subject><subject>Bonding</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Hydrogels</subject><subject>Metal air batteries</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Porphyrins</subject><subject>Pyrolysis</subject><subject>Water uptake</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQRoMoWGov3oWAN2E12WTTybFUq0LVSz0vMZtoyu6mJlmh_960lTqXGYY3H8ND6JKSW0qYvGt4UoQAl-oEjUpSkWLKpTg9zgDnaBLjmuQCQoSUI-RfnA5e-9g5jTvfDK1KzvfYW5y-DJ774hV_-L5x_SeOKQw6DcFg122C_zFxz3RDm1xhh17vLlWLTWt0yqEqqXabcu7GBOtDp3ptLtCZVW00k78-Ru-Lh9X8qVi-PT7PZ8tCl0BTYZspSGNISafcaKpAsKZkLC81A1Epy0vFKgugWQW8krJpShBUKCu1ZIawMbo-5OZHvwcTU732Q8jfxZoRLikBEJCpmwOVHcQYjK03wXUqbGtK6p3T-p6vZnunswxfHeAQ9ZH7d85-AU2AdLA</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Deng, Wenhui</creator><creator>Wu, Tianjing</creator><creator>Wu, Yufeng</creator><creator>Chen, Fang</creator><creator>Bai, Yansong</creator><creator>Zou, Xiaoqing</creator><creator>Jing, Mingjun</creator><creator>Deng, Wentao</creator><creator>Hou, Hongshuai</creator><creator>Wang, Xianyou</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1243-8440</orcidid><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></search><sort><creationdate>20240430</creationdate><title>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</title><author>Deng, Wenhui ; Wu, Tianjing ; Wu, Yufeng ; Chen, Fang ; Bai, Yansong ; Zou, Xiaoqing ; Jing, Mingjun ; Deng, Wentao ; Hou, Hongshuai ; Wang, Xianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-fd789ee02174ec1a863d233789c3865af42a35f88c3584599dd28616af9c93e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adhesion</topic><topic>Batteries</topic><topic>Bonding</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Hydrogels</topic><topic>Metal air batteries</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Porphyrins</topic><topic>Pyrolysis</topic><topic>Water uptake</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wenhui</creatorcontrib><creatorcontrib>Wu, Tianjing</creatorcontrib><creatorcontrib>Wu, Yufeng</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Bai, Yansong</creatorcontrib><creatorcontrib>Zou, Xiaoqing</creatorcontrib><creatorcontrib>Jing, Mingjun</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wenhui</au><au>Wu, Tianjing</au><au>Wu, Yufeng</au><au>Chen, Fang</au><au>Bai, Yansong</au><au>Zou, Xiaoqing</au><au>Jing, Mingjun</au><au>Deng, Wentao</au><au>Hou, Hongshuai</au><au>Wang, Xianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-30</date><risdate>2024</risdate><volume>12</volume><issue>17</issue><spage>1349</spage><epage>1358</epage><pages>1349-1358</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Cobalt-based materials are regarded as greatly active and stable catalysts zinc-air batteries (ZABs). However, details of Co active units are particularly elusive, and it is notoriously difficult to implement precise control, impeding the further improvement of electrochemical performance. Herein, theoretical models of Co-N
x
(
x
= 2 and 4) are systematically designed and studied; the Co-N
2
model can effectively perfect the rate-determining steps for the oxygen reduction reaction (*O → *OH, 0.27 eV) and oxygen evolution reaction (*OOH → * + O
2
, 0.25 eV). On this basis, utilizing a pyrolysis-free route, the well-defined Co-N
2
structure is precisely designed and constructed in the specified atomic configuration. The method proposes atomic precision to regulate the bonding type of M−N
2
units (M = Fe, Cu, and Ni). As expected, co-poly(5,10,15,20-tetrakis(4-aminophenyl)porphyrin) with Co-N
2
active units (Co-PTAPP) demonstrates a rapid kinetic process (34.7 mV dec
−1
), superior to that of the porphyrin organic covalent material with Co-N
4
active centers (Co-POC), matching well with calculated results. In addition, a high-efficiency water uptake hydrogel (PVA-IL), with 1-hydroxylethy-3-methylimidazolium chloride (HOEtMImCl) as the hydrating agent, is efficiently synthesized. Applying optimized PVA-IL in flexible ZABs enables a long discharge time (500 min) at 4 mA cm
−2
, surpassing that of the PVA hydrogel.
The coordination environment of Co-N
x
models is modulated in systematic theoretical studies. Thereinto, the well-defined Co-phenazine bonding structure (Co-N
2
) can efficiently reduce the reaction energy barrier for ORR and OER.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00849a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1243-8440</orcidid><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1349-1358 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3049108868 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adhesion Batteries Bonding Catalysts Chemical reduction Cobalt Electrochemical analysis Electrochemistry Hydrogels Metal air batteries Oxygen Oxygen evolution reactions Oxygen reduction reactions Porphyrins Pyrolysis Water uptake Zinc Zinc-oxygen batteries |
title | Microcosmic modulation of the Co-N bonding structure improves the multi-functional electrocatalytic performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcosmic%20modulation%20of%20the%20Co-N%20bonding%20structure%20improves%20the%20multi-functional%20electrocatalytic%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Deng,%20Wenhui&rft.date=2024-04-30&rft.volume=12&rft.issue=17&rft.spage=1349&rft.epage=1358&rft.pages=1349-1358&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00849a&rft_dat=%3Cproquest_cross%3E3049108868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049108868&rft_id=info:pmid/&rfr_iscdi=true |