Charge interaction behaviors at interfacial domains in DC GIL insulators

Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-04, Vol.124 (18)
Hauptverfasser: Pang, Xi, Xie, Zongliang, Xie, Gengsheng, Liu, Peng, Wang, Qingyu, Peng, Zongren, Li, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Applied physics letters
container_volume 124
creator Pang, Xi
Xie, Zongliang
Xie, Gengsheng
Liu, Peng
Wang, Qingyu
Peng, Zongren
Li, He
description Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis of interaction behaviors between surface charge and space charge at interfacial domains of GIL insulators is a complex task, which requires a comprehensive understanding of physical mechanisms of the gas–solid interface charging. In this work, a two-dimensional bipolar charge transport and interaction (2D BCTI) model is established, with the consideration of both surface and space charge dynamics. Pulsed electroacoustic tests and surface potential measurements are conducted on DC GIL insulator materials under different electrical-thermal coupling conditions. Experimental results exhibit great consistency with the predictions from the 2D BCTI model. The local accumulation of space charge near interfaces has certain effects on surface potential distribution, which in turn influences charge injection behavior from electrodes. In comparison to traditional surface charge simulation models, the consideration of space charge–surface charge interaction behaviors proves to be essential for estimating the polarity and amplitude of surface potential distribution. This model holds promise for assessing charge characteristics in electrical equipment where direct measurement is challenging.
doi_str_mv 10.1063/5.0203206
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3049018794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049018794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-99737c62ae2177da9d01f89919a9191ccf9344b0f79ff29895f204cea12b11683</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKsH_8GCJ4WtM8nuZnOUtbaFghc9h2ma2C3tbk1SwX9vyvbsYZivxww8xu4RJgiVeC4nwEFwqC7YCEHKXCDWl2wEACKvVInX7CaEbWpLLsSIzZsN-S-btV20nkxs-y5b2Q39tL0PGcVh4ci0tMvW_Z7aLqRZ9tpks8UyVeG4o5jYW3blaBfs3TmP2efb9KOZ58v32aJ5WeaGlzzmSkkhTcXJcpRyTWoN6GqlUFEKNMYpURQrcFI5x1WtSsehMJaQrxCrWozZw3D34Pvvow1Rb_uj79JLLaBQgLVURaIeB8r4PgRvnT74dk_-VyPokyhd6rOoxD4NbDBtpJOBf-A_gmBl2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049018794</pqid></control><display><type>article</type><title>Charge interaction behaviors at interfacial domains in DC GIL insulators</title><source>AIP Journals Complete</source><creator>Pang, Xi ; Xie, Zongliang ; Xie, Gengsheng ; Liu, Peng ; Wang, Qingyu ; Peng, Zongren ; Li, He</creator><creatorcontrib>Pang, Xi ; Xie, Zongliang ; Xie, Gengsheng ; Liu, Peng ; Wang, Qingyu ; Peng, Zongren ; Li, He</creatorcontrib><description>Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis of interaction behaviors between surface charge and space charge at interfacial domains of GIL insulators is a complex task, which requires a comprehensive understanding of physical mechanisms of the gas–solid interface charging. In this work, a two-dimensional bipolar charge transport and interaction (2D BCTI) model is established, with the consideration of both surface and space charge dynamics. Pulsed electroacoustic tests and surface potential measurements are conducted on DC GIL insulator materials under different electrical-thermal coupling conditions. Experimental results exhibit great consistency with the predictions from the 2D BCTI model. The local accumulation of space charge near interfaces has certain effects on surface potential distribution, which in turn influences charge injection behavior from electrodes. In comparison to traditional surface charge simulation models, the consideration of space charge–surface charge interaction behaviors proves to be essential for estimating the polarity and amplitude of surface potential distribution. This model holds promise for assessing charge characteristics in electrical equipment where direct measurement is challenging.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0203206</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accumulation ; Charge injection ; Charge simulation ; Charge transport ; Direct current ; Electric equipment ; Electric fields ; Electric power transmission ; Electrical distortion ; High temperature ; Insulators ; Simulation models ; Space charge ; Surface charge ; Thermal coupling ; Transmission lines ; Two dimensional models</subject><ispartof>Applied physics letters, 2024-04, Vol.124 (18)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-99737c62ae2177da9d01f89919a9191ccf9344b0f79ff29895f204cea12b11683</cites><orcidid>0000-0002-6658-2846 ; 0000-0002-6778-6242 ; 0000-0003-4344-3701 ; 0000-0001-5965-332X ; 0000-0002-4076-7279 ; 0000-0001-9671-8305 ; 0000-0002-0509-2552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0203206$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Pang, Xi</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Xie, Gengsheng</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Wang, Qingyu</creatorcontrib><creatorcontrib>Peng, Zongren</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><title>Charge interaction behaviors at interfacial domains in DC GIL insulators</title><title>Applied physics letters</title><description>Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis of interaction behaviors between surface charge and space charge at interfacial domains of GIL insulators is a complex task, which requires a comprehensive understanding of physical mechanisms of the gas–solid interface charging. In this work, a two-dimensional bipolar charge transport and interaction (2D BCTI) model is established, with the consideration of both surface and space charge dynamics. Pulsed electroacoustic tests and surface potential measurements are conducted on DC GIL insulator materials under different electrical-thermal coupling conditions. Experimental results exhibit great consistency with the predictions from the 2D BCTI model. The local accumulation of space charge near interfaces has certain effects on surface potential distribution, which in turn influences charge injection behavior from electrodes. In comparison to traditional surface charge simulation models, the consideration of space charge–surface charge interaction behaviors proves to be essential for estimating the polarity and amplitude of surface potential distribution. This model holds promise for assessing charge characteristics in electrical equipment where direct measurement is challenging.</description><subject>Accumulation</subject><subject>Charge injection</subject><subject>Charge simulation</subject><subject>Charge transport</subject><subject>Direct current</subject><subject>Electric equipment</subject><subject>Electric fields</subject><subject>Electric power transmission</subject><subject>Electrical distortion</subject><subject>High temperature</subject><subject>Insulators</subject><subject>Simulation models</subject><subject>Space charge</subject><subject>Surface charge</subject><subject>Thermal coupling</subject><subject>Transmission lines</subject><subject>Two dimensional models</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKsH_8GCJ4WtM8nuZnOUtbaFghc9h2ma2C3tbk1SwX9vyvbsYZivxww8xu4RJgiVeC4nwEFwqC7YCEHKXCDWl2wEACKvVInX7CaEbWpLLsSIzZsN-S-btV20nkxs-y5b2Q39tL0PGcVh4ci0tMvW_Z7aLqRZ9tpks8UyVeG4o5jYW3blaBfs3TmP2efb9KOZ58v32aJ5WeaGlzzmSkkhTcXJcpRyTWoN6GqlUFEKNMYpURQrcFI5x1WtSsehMJaQrxCrWozZw3D34Pvvow1Rb_uj79JLLaBQgLVURaIeB8r4PgRvnT74dk_-VyPokyhd6rOoxD4NbDBtpJOBf-A_gmBl2Q</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Pang, Xi</creator><creator>Xie, Zongliang</creator><creator>Xie, Gengsheng</creator><creator>Liu, Peng</creator><creator>Wang, Qingyu</creator><creator>Peng, Zongren</creator><creator>Li, He</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6658-2846</orcidid><orcidid>https://orcid.org/0000-0002-6778-6242</orcidid><orcidid>https://orcid.org/0000-0003-4344-3701</orcidid><orcidid>https://orcid.org/0000-0001-5965-332X</orcidid><orcidid>https://orcid.org/0000-0002-4076-7279</orcidid><orcidid>https://orcid.org/0000-0001-9671-8305</orcidid><orcidid>https://orcid.org/0000-0002-0509-2552</orcidid></search><sort><creationdate>20240429</creationdate><title>Charge interaction behaviors at interfacial domains in DC GIL insulators</title><author>Pang, Xi ; Xie, Zongliang ; Xie, Gengsheng ; Liu, Peng ; Wang, Qingyu ; Peng, Zongren ; Li, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-99737c62ae2177da9d01f89919a9191ccf9344b0f79ff29895f204cea12b11683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accumulation</topic><topic>Charge injection</topic><topic>Charge simulation</topic><topic>Charge transport</topic><topic>Direct current</topic><topic>Electric equipment</topic><topic>Electric fields</topic><topic>Electric power transmission</topic><topic>Electrical distortion</topic><topic>High temperature</topic><topic>Insulators</topic><topic>Simulation models</topic><topic>Space charge</topic><topic>Surface charge</topic><topic>Thermal coupling</topic><topic>Transmission lines</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xi</creatorcontrib><creatorcontrib>Xie, Zongliang</creatorcontrib><creatorcontrib>Xie, Gengsheng</creatorcontrib><creatorcontrib>Liu, Peng</creatorcontrib><creatorcontrib>Wang, Qingyu</creatorcontrib><creatorcontrib>Peng, Zongren</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xi</au><au>Xie, Zongliang</au><au>Xie, Gengsheng</au><au>Liu, Peng</au><au>Wang, Qingyu</au><au>Peng, Zongren</au><au>Li, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge interaction behaviors at interfacial domains in DC GIL insulators</atitle><jtitle>Applied physics letters</jtitle><date>2024-04-29</date><risdate>2024</risdate><volume>124</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis of interaction behaviors between surface charge and space charge at interfacial domains of GIL insulators is a complex task, which requires a comprehensive understanding of physical mechanisms of the gas–solid interface charging. In this work, a two-dimensional bipolar charge transport and interaction (2D BCTI) model is established, with the consideration of both surface and space charge dynamics. Pulsed electroacoustic tests and surface potential measurements are conducted on DC GIL insulator materials under different electrical-thermal coupling conditions. Experimental results exhibit great consistency with the predictions from the 2D BCTI model. The local accumulation of space charge near interfaces has certain effects on surface potential distribution, which in turn influences charge injection behavior from electrodes. In comparison to traditional surface charge simulation models, the consideration of space charge–surface charge interaction behaviors proves to be essential for estimating the polarity and amplitude of surface potential distribution. This model holds promise for assessing charge characteristics in electrical equipment where direct measurement is challenging.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203206</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6658-2846</orcidid><orcidid>https://orcid.org/0000-0002-6778-6242</orcidid><orcidid>https://orcid.org/0000-0003-4344-3701</orcidid><orcidid>https://orcid.org/0000-0001-5965-332X</orcidid><orcidid>https://orcid.org/0000-0002-4076-7279</orcidid><orcidid>https://orcid.org/0000-0001-9671-8305</orcidid><orcidid>https://orcid.org/0000-0002-0509-2552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-04, Vol.124 (18)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3049018794
source AIP Journals Complete
subjects Accumulation
Charge injection
Charge simulation
Charge transport
Direct current
Electric equipment
Electric fields
Electric power transmission
Electrical distortion
High temperature
Insulators
Simulation models
Space charge
Surface charge
Thermal coupling
Transmission lines
Two dimensional models
title Charge interaction behaviors at interfacial domains in DC GIL insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20interaction%20behaviors%20at%20interfacial%20domains%20in%20DC%20GIL%20insulators&rft.jtitle=Applied%20physics%20letters&rft.au=Pang,%20Xi&rft.date=2024-04-29&rft.volume=124&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0203206&rft_dat=%3Cproquest_scita%3E3049018794%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049018794&rft_id=info:pmid/&rfr_iscdi=true