Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process
Mn 3 O 4 quantum dots (QDs) are synthesized at room temperature, and the resulting samples are annealed at the temperature of 523 K and 773 K. The crystallinity, average particle size, and lattice parameters of the prepared manganese oxide QDs are analyzed using X-ray crystal diffraction (XRD) studi...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024-04, Vol.35 (12), p.830, Article 830 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 830 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Pugazhvadivu, K. S. Ashokkumar, M. |
description | Mn
3
O
4
quantum dots (QDs) are synthesized at room temperature, and the resulting samples are annealed at the temperature of 523 K and 773 K. The crystallinity, average particle size, and lattice parameters of the prepared manganese oxide QDs are analyzed using X-ray crystal diffraction (XRD) studies. Furthermore, X-ray photoelectron spectroscopy (XPS) is used to investigate the elements present on the surface of nanomaterials, the oxidation state, and the type of functional groups attached to the surface of QDs. The optical and magnetic properties of the produced QDs have also been studied with UV–Visible absorption spectra and vibrating sample magnetometer (VSM), respectively. Single-phase Mn
3
O
4
QDs with the most stable tetragonal structure are detected by XRD. Due to grain growth, the optical band gap of Mn
3
O
4
QDs has shifted from 4.12 to 3.96 eV, reaching the lowest value (3.96 eV) for the sample annealed at 773 K. All of the prepared samples of Mn
3
O
4
QDs exhibit ferromagnetism at room temperature (300 K), with the sample annealed at 773 K having higher saturation magnetization (
M
s
=366 memu/gm) and remanence (
M
r
= 73memu/gm) when compared with the same QDs annealed at low temperature. |
doi_str_mv | 10.1007/s10854-024-12519-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048655848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048655848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ecc0a51f6214f007212f011a6ff44b279fc88bd10d1782c9679aa9c96f014d6d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt_wFPAc_Qlm2yyRylqhUovLXgLaTapW9rsNtk99N-buoI3T8ODb2Z4g9A9hUcKIJ8SBSU4AcYJZYJWhF2gCRWyIFyxz0s0gUpIwgVj1-gmpR0AlLxQE7ReDaEJW9x_Odx2fWPNHptQ44PZBpdP3MW2c7FvXMKtxx-hWHJ8HEzohwOu2z7hzSkbgjP7c0ymrUvpFl15s0_u7lenaP36sprNyWL59j57XhDLJPTEWQtGUF8yyn1-g1HmgVJTes_5hsnKW6U2NYWaSsVsVcrKmCprpnhd1sUUPYy5ufc4uNTrXTvEkCt1AVyVQiiuMsVGysY2pei87mJzMPGkKejzfHqcT-f59M98mmVTMZpShsPWxb_of1zfYhJyZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048655848</pqid></control><display><type>article</type><title>Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pugazhvadivu, K. S. ; Ashokkumar, M.</creator><creatorcontrib>Pugazhvadivu, K. S. ; Ashokkumar, M.</creatorcontrib><description>Mn
3
O
4
quantum dots (QDs) are synthesized at room temperature, and the resulting samples are annealed at the temperature of 523 K and 773 K. The crystallinity, average particle size, and lattice parameters of the prepared manganese oxide QDs are analyzed using X-ray crystal diffraction (XRD) studies. Furthermore, X-ray photoelectron spectroscopy (XPS) is used to investigate the elements present on the surface of nanomaterials, the oxidation state, and the type of functional groups attached to the surface of QDs. The optical and magnetic properties of the produced QDs have also been studied with UV–Visible absorption spectra and vibrating sample magnetometer (VSM), respectively. Single-phase Mn
3
O
4
QDs with the most stable tetragonal structure are detected by XRD. Due to grain growth, the optical band gap of Mn
3
O
4
QDs has shifted from 4.12 to 3.96 eV, reaching the lowest value (3.96 eV) for the sample annealed at 773 K. All of the prepared samples of Mn
3
O
4
QDs exhibit ferromagnetism at room temperature (300 K), with the sample annealed at 773 K having higher saturation magnetization (
M
s
=366 memu/gm) and remanence (
M
r
= 73memu/gm) when compared with the same QDs annealed at low temperature.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-12519-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Ferromagnetism ; Functional groups ; Grain growth ; Lattice parameters ; Low temperature ; Magnetic properties ; Magnetic saturation ; Manganese oxides ; Materials Science ; Nanomaterials ; Optical and Electronic Materials ; Optical properties ; Oxidation ; Photoelectrons ; Quantum dots ; Remanence ; Room temperature ; Spectrum analysis ; Valence ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2024-04, Vol.35 (12), p.830, Article 830</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ecc0a51f6214f007212f011a6ff44b279fc88bd10d1782c9679aa9c96f014d6d3</cites><orcidid>0000-0003-3040-4295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-12519-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-12519-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pugazhvadivu, K. S.</creatorcontrib><creatorcontrib>Ashokkumar, M.</creatorcontrib><title>Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Mn
3
O
4
quantum dots (QDs) are synthesized at room temperature, and the resulting samples are annealed at the temperature of 523 K and 773 K. The crystallinity, average particle size, and lattice parameters of the prepared manganese oxide QDs are analyzed using X-ray crystal diffraction (XRD) studies. Furthermore, X-ray photoelectron spectroscopy (XPS) is used to investigate the elements present on the surface of nanomaterials, the oxidation state, and the type of functional groups attached to the surface of QDs. The optical and magnetic properties of the produced QDs have also been studied with UV–Visible absorption spectra and vibrating sample magnetometer (VSM), respectively. Single-phase Mn
3
O
4
QDs with the most stable tetragonal structure are detected by XRD. Due to grain growth, the optical band gap of Mn
3
O
4
QDs has shifted from 4.12 to 3.96 eV, reaching the lowest value (3.96 eV) for the sample annealed at 773 K. All of the prepared samples of Mn
3
O
4
QDs exhibit ferromagnetism at room temperature (300 K), with the sample annealed at 773 K having higher saturation magnetization (
M
s
=366 memu/gm) and remanence (
M
r
= 73memu/gm) when compared with the same QDs annealed at low temperature.</description><subject>Absorption spectra</subject><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Ferromagnetism</subject><subject>Functional groups</subject><subject>Grain growth</subject><subject>Lattice parameters</subject><subject>Low temperature</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Manganese oxides</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Photoelectrons</subject><subject>Quantum dots</subject><subject>Remanence</subject><subject>Room temperature</subject><subject>Spectrum analysis</subject><subject>Valence</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt_wFPAc_Qlm2yyRylqhUovLXgLaTapW9rsNtk99N-buoI3T8ODb2Z4g9A9hUcKIJ8SBSU4AcYJZYJWhF2gCRWyIFyxz0s0gUpIwgVj1-gmpR0AlLxQE7ReDaEJW9x_Odx2fWPNHptQ44PZBpdP3MW2c7FvXMKtxx-hWHJ8HEzohwOu2z7hzSkbgjP7c0ymrUvpFl15s0_u7lenaP36sprNyWL59j57XhDLJPTEWQtGUF8yyn1-g1HmgVJTes_5hsnKW6U2NYWaSsVsVcrKmCprpnhd1sUUPYy5ufc4uNTrXTvEkCt1AVyVQiiuMsVGysY2pei87mJzMPGkKejzfHqcT-f59M98mmVTMZpShsPWxb_of1zfYhJyZA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Pugazhvadivu, K. S.</creator><creator>Ashokkumar, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3040-4295</orcidid></search><sort><creationdate>20240401</creationdate><title>Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process</title><author>Pugazhvadivu, K. S. ; Ashokkumar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ecc0a51f6214f007212f011a6ff44b279fc88bd10d1782c9679aa9c96f014d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Ferromagnetism</topic><topic>Functional groups</topic><topic>Grain growth</topic><topic>Lattice parameters</topic><topic>Low temperature</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Manganese oxides</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Photoelectrons</topic><topic>Quantum dots</topic><topic>Remanence</topic><topic>Room temperature</topic><topic>Spectrum analysis</topic><topic>Valence</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pugazhvadivu, K. S.</creatorcontrib><creatorcontrib>Ashokkumar, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pugazhvadivu, K. S.</au><au>Ashokkumar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>12</issue><spage>830</spage><pages>830-</pages><artnum>830</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Mn
3
O
4
quantum dots (QDs) are synthesized at room temperature, and the resulting samples are annealed at the temperature of 523 K and 773 K. The crystallinity, average particle size, and lattice parameters of the prepared manganese oxide QDs are analyzed using X-ray crystal diffraction (XRD) studies. Furthermore, X-ray photoelectron spectroscopy (XPS) is used to investigate the elements present on the surface of nanomaterials, the oxidation state, and the type of functional groups attached to the surface of QDs. The optical and magnetic properties of the produced QDs have also been studied with UV–Visible absorption spectra and vibrating sample magnetometer (VSM), respectively. Single-phase Mn
3
O
4
QDs with the most stable tetragonal structure are detected by XRD. Due to grain growth, the optical band gap of Mn
3
O
4
QDs has shifted from 4.12 to 3.96 eV, reaching the lowest value (3.96 eV) for the sample annealed at 773 K. All of the prepared samples of Mn
3
O
4
QDs exhibit ferromagnetism at room temperature (300 K), with the sample annealed at 773 K having higher saturation magnetization (
M
s
=366 memu/gm) and remanence (
M
r
= 73memu/gm) when compared with the same QDs annealed at low temperature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-12519-2</doi><orcidid>https://orcid.org/0000-0003-3040-4295</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024-04, Vol.35 (12), p.830, Article 830 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_3048655848 |
source | SpringerLink Journals - AutoHoldings |
subjects | Absorption spectra Annealing Characterization and Evaluation of Materials Chemistry and Materials Science Ferromagnetism Functional groups Grain growth Lattice parameters Low temperature Magnetic properties Magnetic saturation Manganese oxides Materials Science Nanomaterials Optical and Electronic Materials Optical properties Oxidation Photoelectrons Quantum dots Remanence Room temperature Spectrum analysis Valence X ray photoelectron spectroscopy X-ray diffraction |
title | Tuning the optical and magnetic properties of Mn3O4 quantum dots by annealing process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20optical%20and%20magnetic%20properties%20of%20Mn3O4%20quantum%20dots%20by%20annealing%20process&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Pugazhvadivu,%20K.%20S.&rft.date=2024-04-01&rft.volume=35&rft.issue=12&rft.spage=830&rft.pages=830-&rft.artnum=830&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-12519-2&rft_dat=%3Cproquest_cross%3E3048655848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048655848&rft_id=info:pmid/&rfr_iscdi=true |