OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation
Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications a...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2024-05, Vol.27 (3), p.28, Article 28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 28 |
container_title | World wide web (Bussum) |
container_volume | 27 |
creator | Tan, Weicong Wang, Weiqing Zhou, Xin Buntine, Wray Bingham, Gordon Yin, Hongzhi |
description | Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose
OntoMedRec
, the
logically-pretrained
and
model-agnostic
medical
Onto
logy Encoders for
Med
ication
Rec
ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (
https://github.com/WaicongTam/OntoMedRec
) |
doi_str_mv | 10.1007/s11280-024-01268-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048639193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048639193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8R_OaJm29yeIXrCyIgreQTV5LlzZZk-5h_73ZreDN05vhzczjDSHXwG6BsfIuAuQVoywvKINcVhROyAxEySkUwE8T5pVMWHydk4sYN4wxyWuYEbVyo39D-47mPlv6tjO67_d0G3AMunNos8Fb7KlunY9jZzKf9L1v9xk6kzYhZo0P2YA2OcfOuyyg8cOAzh7pJTlrdB_x6nfOyefT48fihS5Xz6-LhyU1HIqRQq4FcmzWggsOwgBIq2sobVnh2qLUhSxrXjFhmdWwtnliTcNRSMZRs5rPyc2Uuw3-e4dxVBu_Cy6dVJwV1eHZmidVPqlM8DEGbNQ2dIMOewVMHYpUU5EqFamORSpIJj6ZYhK7FsNf9D-uH0f3d3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048639193</pqid></control><display><type>article</type><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><source>Springer journals</source><creator>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</creator><creatorcontrib>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</creatorcontrib><description>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose
OntoMedRec
, the
logically-pretrained
and
model-agnostic
medical
Onto
logy Encoders for
Med
ication
Rec
ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (
https://github.com/WaicongTam/OntoMedRec
)</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-024-01268-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coders ; Computer Science ; Database Management ; Datasets ; Decision support systems ; Electronic health records ; Frequency distribution ; Information Systems Applications (incl.Internet) ; Knowledge representation ; Ontology ; Operating Systems ; Source code ; Special Issue on Advancing recommendation systems with foundation models</subject><ispartof>World wide web (Bussum), 2024-05, Vol.27 (3), p.28, Article 28</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-024-01268-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-024-01268-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tan, Weicong</creatorcontrib><creatorcontrib>Wang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Buntine, Wray</creatorcontrib><creatorcontrib>Bingham, Gordon</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose
OntoMedRec
, the
logically-pretrained
and
model-agnostic
medical
Onto
logy Encoders for
Med
ication
Rec
ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (
https://github.com/WaicongTam/OntoMedRec
)</description><subject>Coders</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Decision support systems</subject><subject>Electronic health records</subject><subject>Frequency distribution</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Knowledge representation</subject><subject>Ontology</subject><subject>Operating Systems</subject><subject>Source code</subject><subject>Special Issue on Advancing recommendation systems with foundation models</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAUDKLguvoHPBU8R_OaJm29yeIXrCyIgreQTV5LlzZZk-5h_73ZreDN05vhzczjDSHXwG6BsfIuAuQVoywvKINcVhROyAxEySkUwE8T5pVMWHydk4sYN4wxyWuYEbVyo39D-47mPlv6tjO67_d0G3AMunNos8Fb7KlunY9jZzKf9L1v9xk6kzYhZo0P2YA2OcfOuyyg8cOAzh7pJTlrdB_x6nfOyefT48fihS5Xz6-LhyU1HIqRQq4FcmzWggsOwgBIq2sobVnh2qLUhSxrXjFhmdWwtnliTcNRSMZRs5rPyc2Uuw3-e4dxVBu_Cy6dVJwV1eHZmidVPqlM8DEGbNQ2dIMOewVMHYpUU5EqFamORSpIJj6ZYhK7FsNf9D-uH0f3d3w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tan, Weicong</creator><creator>Wang, Weiqing</creator><creator>Zhou, Xin</creator><creator>Buntine, Wray</creator><creator>Bingham, Gordon</creator><creator>Yin, Hongzhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><author>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Decision support systems</topic><topic>Electronic health records</topic><topic>Frequency distribution</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Knowledge representation</topic><topic>Ontology</topic><topic>Operating Systems</topic><topic>Source code</topic><topic>Special Issue on Advancing recommendation systems with foundation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Weicong</creatorcontrib><creatorcontrib>Wang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Buntine, Wray</creatorcontrib><creatorcontrib>Bingham, Gordon</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Weicong</au><au>Wang, Weiqing</au><au>Zhou, Xin</au><au>Buntine, Wray</au><au>Bingham, Gordon</au><au>Yin, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><spage>28</spage><pages>28-</pages><artnum>28</artnum><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose
OntoMedRec
, the
logically-pretrained
and
model-agnostic
medical
Onto
logy Encoders for
Med
ication
Rec
ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. (
https://github.com/WaicongTam/OntoMedRec
)</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-024-01268-1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2024-05, Vol.27 (3), p.28, Article 28 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_journals_3048639193 |
source | Springer journals |
subjects | Coders Computer Science Database Management Datasets Decision support systems Electronic health records Frequency distribution Information Systems Applications (incl.Internet) Knowledge representation Ontology Operating Systems Source code Special Issue on Advancing recommendation systems with foundation models |
title | OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T17%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OntoMedRec:%20Logically-pretrained%20model-agnostic%20ontology%20encoders%20for%20medication%20recommendation&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Tan,%20Weicong&rft.date=2024-05-01&rft.volume=27&rft.issue=3&rft.spage=28&rft.pages=28-&rft.artnum=28&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-024-01268-1&rft_dat=%3Cproquest_cross%3E3048639193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048639193&rft_id=info:pmid/&rfr_iscdi=true |