OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation

Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2024-05, Vol.27 (3), p.28, Article 28
Hauptverfasser: Tan, Weicong, Wang, Weiqing, Zhou, Xin, Buntine, Wray, Bingham, Gordon, Yin, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 28
container_title World wide web (Bussum)
container_volume 27
creator Tan, Weicong
Wang, Weiqing
Zhou, Xin
Buntine, Wray
Bingham, Gordon
Yin, Hongzhi
description Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose OntoMedRec , the logically-pretrained and model-agnostic medical Onto logy Encoders for Med ication Rec ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. ( https://github.com/WaicongTam/OntoMedRec )
doi_str_mv 10.1007/s11280-024-01268-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048639193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048639193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8R_OaJm29yeIXrCyIgreQTV5LlzZZk-5h_73ZreDN05vhzczjDSHXwG6BsfIuAuQVoywvKINcVhROyAxEySkUwE8T5pVMWHydk4sYN4wxyWuYEbVyo39D-47mPlv6tjO67_d0G3AMunNos8Fb7KlunY9jZzKf9L1v9xk6kzYhZo0P2YA2OcfOuyyg8cOAzh7pJTlrdB_x6nfOyefT48fihS5Xz6-LhyU1HIqRQq4FcmzWggsOwgBIq2sobVnh2qLUhSxrXjFhmdWwtnliTcNRSMZRs5rPyc2Uuw3-e4dxVBu_Cy6dVJwV1eHZmidVPqlM8DEGbNQ2dIMOewVMHYpUU5EqFamORSpIJj6ZYhK7FsNf9D-uH0f3d3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048639193</pqid></control><display><type>article</type><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><source>Springer journals</source><creator>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</creator><creatorcontrib>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</creatorcontrib><description>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose OntoMedRec , the logically-pretrained and model-agnostic medical Onto logy Encoders for Med ication Rec ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. ( https://github.com/WaicongTam/OntoMedRec )</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-024-01268-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Coders ; Computer Science ; Database Management ; Datasets ; Decision support systems ; Electronic health records ; Frequency distribution ; Information Systems Applications (incl.Internet) ; Knowledge representation ; Ontology ; Operating Systems ; Source code ; Special Issue on Advancing recommendation systems with foundation models</subject><ispartof>World wide web (Bussum), 2024-05, Vol.27 (3), p.28, Article 28</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-024-01268-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-024-01268-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Tan, Weicong</creatorcontrib><creatorcontrib>Wang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Buntine, Wray</creatorcontrib><creatorcontrib>Bingham, Gordon</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose OntoMedRec , the logically-pretrained and model-agnostic medical Onto logy Encoders for Med ication Rec ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. ( https://github.com/WaicongTam/OntoMedRec )</description><subject>Coders</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Decision support systems</subject><subject>Electronic health records</subject><subject>Frequency distribution</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Knowledge representation</subject><subject>Ontology</subject><subject>Operating Systems</subject><subject>Source code</subject><subject>Special Issue on Advancing recommendation systems with foundation models</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAUDKLguvoHPBU8R_OaJm29yeIXrCyIgreQTV5LlzZZk-5h_73ZreDN05vhzczjDSHXwG6BsfIuAuQVoywvKINcVhROyAxEySkUwE8T5pVMWHydk4sYN4wxyWuYEbVyo39D-47mPlv6tjO67_d0G3AMunNos8Fb7KlunY9jZzKf9L1v9xk6kzYhZo0P2YA2OcfOuyyg8cOAzh7pJTlrdB_x6nfOyefT48fihS5Xz6-LhyU1HIqRQq4FcmzWggsOwgBIq2sobVnh2qLUhSxrXjFhmdWwtnliTcNRSMZRs5rPyc2Uuw3-e4dxVBu_Cy6dVJwV1eHZmidVPqlM8DEGbNQ2dIMOewVMHYpUU5EqFamORSpIJj6ZYhK7FsNf9D-uH0f3d3w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tan, Weicong</creator><creator>Wang, Weiqing</creator><creator>Zhou, Xin</creator><creator>Buntine, Wray</creator><creator>Bingham, Gordon</creator><creator>Yin, Hongzhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</title><author>Tan, Weicong ; Wang, Weiqing ; Zhou, Xin ; Buntine, Wray ; Bingham, Gordon ; Yin, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-12a5e3efb535315c116da917d78ebde6a46793805d0da1bd2793ff3e5603ea093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coders</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Decision support systems</topic><topic>Electronic health records</topic><topic>Frequency distribution</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Knowledge representation</topic><topic>Ontology</topic><topic>Operating Systems</topic><topic>Source code</topic><topic>Special Issue on Advancing recommendation systems with foundation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Weicong</creatorcontrib><creatorcontrib>Wang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Buntine, Wray</creatorcontrib><creatorcontrib>Bingham, Gordon</creatorcontrib><creatorcontrib>Yin, Hongzhi</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Weicong</au><au>Wang, Weiqing</au><au>Zhou, Xin</au><au>Buntine, Wray</au><au>Bingham, Gordon</au><au>Yin, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>27</volume><issue>3</issue><spage>28</spage><pages>28-</pages><artnum>28</artnum><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Recommending medications with electronic health records (EHRs) is a challenging task for data-driven clinical decision support systems. Most existing models learnt representations for medical concepts based on EHRs and make recommendations with the learnt representations. However, most medications appear in EHR datasets for limited times (the frequency distribution of medications follows power law distribution), resulting in insufficient learning of their representations of the medications. Medical ontologies are the hierarchical classification systems for medical terms where similar terms will be in the same class on a certain level. In this paper, we propose OntoMedRec , the logically-pretrained and model-agnostic medical Onto logy Encoders for Med ication Rec ommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on real-world EHR datasets to evaluate the effectiveness of OntoMedRec by integrating it into various existing downstream medication recommendation models. The result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code. ( https://github.com/WaicongTam/OntoMedRec )</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-024-01268-1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2024-05, Vol.27 (3), p.28, Article 28
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_3048639193
source Springer journals
subjects Coders
Computer Science
Database Management
Datasets
Decision support systems
Electronic health records
Frequency distribution
Information Systems Applications (incl.Internet)
Knowledge representation
Ontology
Operating Systems
Source code
Special Issue on Advancing recommendation systems with foundation models
title OntoMedRec: Logically-pretrained model-agnostic ontology encoders for medication recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T17%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OntoMedRec:%20Logically-pretrained%20model-agnostic%20ontology%20encoders%20for%20medication%20recommendation&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Tan,%20Weicong&rft.date=2024-05-01&rft.volume=27&rft.issue=3&rft.spage=28&rft.pages=28-&rft.artnum=28&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-024-01268-1&rft_dat=%3Cproquest_cross%3E3048639193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048639193&rft_id=info:pmid/&rfr_iscdi=true