LaRW: boosting open-set semi-supervised learning with label-guided re-weighting

The superior performance of traditional Semi-Supervised Learning (SSL) methods are generally achieved in strictly data-constrained scenarios, e.g. the class distribution of labeled and unlabeled data is matched. However, in realistic scenarios, unlabeled data is gathered from a variety of sources an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-05, Vol.83 (15), p.46419-46437
Hauptverfasser: Ouyang, Jihong, Mao, Dong, Meng, Qingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!