LaRW: boosting open-set semi-supervised learning with label-guided re-weighting
The superior performance of traditional Semi-Supervised Learning (SSL) methods are generally achieved in strictly data-constrained scenarios, e.g. the class distribution of labeled and unlabeled data is matched. However, in realistic scenarios, unlabeled data is gathered from a variety of sources an...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-05, Vol.83 (15), p.46419-46437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!