Multi-scale pooling learning for camouflaged instance segmentation

Camouflaged instance segmentation (CIS) focuses on handling instances that attempt to blend into the background. However, existing CIS methods emphasize global interactions but overlook hidden clues at various scales, resulting in inaccurate recognition of camouflaged instances. To address this, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024-03, Vol.54 (5), p.4062-4076
Hauptverfasser: Li, Chen, Jiao, Ge, Yue, Guowen, He, Rong, Huang, Jiayu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4076
container_issue 5
container_start_page 4062
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 54
creator Li, Chen
Jiao, Ge
Yue, Guowen
He, Rong
Huang, Jiayu
description Camouflaged instance segmentation (CIS) focuses on handling instances that attempt to blend into the background. However, existing CIS methods emphasize global interactions but overlook hidden clues at various scales, resulting in inaccurate recognition of camouflaged instances. To address this, we propose a multi-scale pooling network (MSPNet) to mine the hidden cues offered by the camouflaged instances at various scales. The network achieves an enhanced fusion of multi-scale information mainly through multilayer pooling. Specifically, the pyramid pooling transformer (P2T) is utilized as a robust backbone for extracting multi-scale features. Then, we introduce an end-to-end pooling learning transformer (PLT) to obtain instance-aware parameters and high-quality mask features. To further augment the fusion of various mask features, we design a novel multi-scale complementary feature pooling (MCFP) module. Additionally, we also suggest an instance normalization module with fused spatial attention (FSA-IN) to combine instance-aware parameters and mask features, resulting in the final camouflaged instances. Experimental results show the effectiveness of MSPNet, surpassing existing CIS models on the COD10K-Test and NC4K datasets, with respective average precision (AP) scores of 49.6% and 53.4%. This demonstrates the effectiveness of the proposed approach in detecting camouflaged instances. Our code will be published at https://github.com/another-u/MSPNet-main .
doi_str_mv 10.1007/s10489-024-05369-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048243641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048243641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d4031fa8ccb2e3c00df4f9733b014508f4931c029f67bd439ceba7eb43eab2913</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJJttsjrr4D1a8KHgLaZqULt2kJu3Bb2_XCt48zcC894b3I-SSwTUDkDeZgVgrClxQWGGpKD8iC7aSSKVQ8pgsQE2nslQfp-Qs5x0AIAJbkLuXsRtamq3pXNHH2LWhKTpnUjgsPqbCmn0cfWcaVxdtyIMJ1hXZNXsXBjO0MZyTE2-67C5-55K8P9y_bZ7o9vXxeXO7pZZLGGgtAJk3a2sr7tAC1F54JRErYGIFay8UMgtc-VJWtUBlXWWkqwQ6U3HFcEmu5tw-xc_R5UHv4pjC9FLj1J4LLMVBxWeVTTHn5LzuU7s36Usz0AdWemalJ1b6h5XmkwlnU57EoXHpL_of1zfeUGzP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048243641</pqid></control><display><type>article</type><title>Multi-scale pooling learning for camouflaged instance segmentation</title><source>SpringerLink Journals</source><creator>Li, Chen ; Jiao, Ge ; Yue, Guowen ; He, Rong ; Huang, Jiayu</creator><creatorcontrib>Li, Chen ; Jiao, Ge ; Yue, Guowen ; He, Rong ; Huang, Jiayu</creatorcontrib><description>Camouflaged instance segmentation (CIS) focuses on handling instances that attempt to blend into the background. However, existing CIS methods emphasize global interactions but overlook hidden clues at various scales, resulting in inaccurate recognition of camouflaged instances. To address this, we propose a multi-scale pooling network (MSPNet) to mine the hidden cues offered by the camouflaged instances at various scales. The network achieves an enhanced fusion of multi-scale information mainly through multilayer pooling. Specifically, the pyramid pooling transformer (P2T) is utilized as a robust backbone for extracting multi-scale features. Then, we introduce an end-to-end pooling learning transformer (PLT) to obtain instance-aware parameters and high-quality mask features. To further augment the fusion of various mask features, we design a novel multi-scale complementary feature pooling (MCFP) module. Additionally, we also suggest an instance normalization module with fused spatial attention (FSA-IN) to combine instance-aware parameters and mask features, resulting in the final camouflaged instances. Experimental results show the effectiveness of MSPNet, surpassing existing CIS models on the COD10K-Test and NC4K datasets, with respective average precision (AP) scores of 49.6% and 53.4%. This demonstrates the effectiveness of the proposed approach in detecting camouflaged instances. Our code will be published at https://github.com/another-u/MSPNet-main .</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-024-05369-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Design ; Effectiveness ; Instance segmentation ; Learning ; Machines ; Manufacturing ; Mechanical Engineering ; Modules ; Multilayers ; Parameters ; Processes ; Transformers ; Visual perception</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024-03, Vol.54 (5), p.4062-4076</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d4031fa8ccb2e3c00df4f9733b014508f4931c029f67bd439ceba7eb43eab2913</cites><orcidid>0000-0002-0290-2046 ; 0000-0002-6202-3158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-024-05369-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-024-05369-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Jiao, Ge</creatorcontrib><creatorcontrib>Yue, Guowen</creatorcontrib><creatorcontrib>He, Rong</creatorcontrib><creatorcontrib>Huang, Jiayu</creatorcontrib><title>Multi-scale pooling learning for camouflaged instance segmentation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Camouflaged instance segmentation (CIS) focuses on handling instances that attempt to blend into the background. However, existing CIS methods emphasize global interactions but overlook hidden clues at various scales, resulting in inaccurate recognition of camouflaged instances. To address this, we propose a multi-scale pooling network (MSPNet) to mine the hidden cues offered by the camouflaged instances at various scales. The network achieves an enhanced fusion of multi-scale information mainly through multilayer pooling. Specifically, the pyramid pooling transformer (P2T) is utilized as a robust backbone for extracting multi-scale features. Then, we introduce an end-to-end pooling learning transformer (PLT) to obtain instance-aware parameters and high-quality mask features. To further augment the fusion of various mask features, we design a novel multi-scale complementary feature pooling (MCFP) module. Additionally, we also suggest an instance normalization module with fused spatial attention (FSA-IN) to combine instance-aware parameters and mask features, resulting in the final camouflaged instances. Experimental results show the effectiveness of MSPNet, surpassing existing CIS models on the COD10K-Test and NC4K datasets, with respective average precision (AP) scores of 49.6% and 53.4%. This demonstrates the effectiveness of the proposed approach in detecting camouflaged instances. Our code will be published at https://github.com/another-u/MSPNet-main .</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Design</subject><subject>Effectiveness</subject><subject>Instance segmentation</subject><subject>Learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Modules</subject><subject>Multilayers</subject><subject>Parameters</subject><subject>Processes</subject><subject>Transformers</subject><subject>Visual perception</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9FJJttsjrr4D1a8KHgLaZqULt2kJu3Bb2_XCt48zcC894b3I-SSwTUDkDeZgVgrClxQWGGpKD8iC7aSSKVQ8pgsQE2nslQfp-Qs5x0AIAJbkLuXsRtamq3pXNHH2LWhKTpnUjgsPqbCmn0cfWcaVxdtyIMJ1hXZNXsXBjO0MZyTE2-67C5-55K8P9y_bZ7o9vXxeXO7pZZLGGgtAJk3a2sr7tAC1F54JRErYGIFay8UMgtc-VJWtUBlXWWkqwQ6U3HFcEmu5tw-xc_R5UHv4pjC9FLj1J4LLMVBxWeVTTHn5LzuU7s36Usz0AdWemalJ1b6h5XmkwlnU57EoXHpL_of1zfeUGzP</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Li, Chen</creator><creator>Jiao, Ge</creator><creator>Yue, Guowen</creator><creator>He, Rong</creator><creator>Huang, Jiayu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0290-2046</orcidid><orcidid>https://orcid.org/0000-0002-6202-3158</orcidid></search><sort><creationdate>20240301</creationdate><title>Multi-scale pooling learning for camouflaged instance segmentation</title><author>Li, Chen ; Jiao, Ge ; Yue, Guowen ; He, Rong ; Huang, Jiayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d4031fa8ccb2e3c00df4f9733b014508f4931c029f67bd439ceba7eb43eab2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Design</topic><topic>Effectiveness</topic><topic>Instance segmentation</topic><topic>Learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Modules</topic><topic>Multilayers</topic><topic>Parameters</topic><topic>Processes</topic><topic>Transformers</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Jiao, Ge</creatorcontrib><creatorcontrib>Yue, Guowen</creatorcontrib><creatorcontrib>He, Rong</creatorcontrib><creatorcontrib>Huang, Jiayu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen</au><au>Jiao, Ge</au><au>Yue, Guowen</au><au>He, Rong</au><au>Huang, Jiayu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale pooling learning for camouflaged instance segmentation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><spage>4062</spage><epage>4076</epage><pages>4062-4076</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Camouflaged instance segmentation (CIS) focuses on handling instances that attempt to blend into the background. However, existing CIS methods emphasize global interactions but overlook hidden clues at various scales, resulting in inaccurate recognition of camouflaged instances. To address this, we propose a multi-scale pooling network (MSPNet) to mine the hidden cues offered by the camouflaged instances at various scales. The network achieves an enhanced fusion of multi-scale information mainly through multilayer pooling. Specifically, the pyramid pooling transformer (P2T) is utilized as a robust backbone for extracting multi-scale features. Then, we introduce an end-to-end pooling learning transformer (PLT) to obtain instance-aware parameters and high-quality mask features. To further augment the fusion of various mask features, we design a novel multi-scale complementary feature pooling (MCFP) module. Additionally, we also suggest an instance normalization module with fused spatial attention (FSA-IN) to combine instance-aware parameters and mask features, resulting in the final camouflaged instances. Experimental results show the effectiveness of MSPNet, surpassing existing CIS models on the COD10K-Test and NC4K datasets, with respective average precision (AP) scores of 49.6% and 53.4%. This demonstrates the effectiveness of the proposed approach in detecting camouflaged instances. Our code will be published at https://github.com/another-u/MSPNet-main .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-024-05369-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0290-2046</orcidid><orcidid>https://orcid.org/0000-0002-6202-3158</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2024-03, Vol.54 (5), p.4062-4076
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_3048243641
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Computer Science
Design
Effectiveness
Instance segmentation
Learning
Machines
Manufacturing
Mechanical Engineering
Modules
Multilayers
Parameters
Processes
Transformers
Visual perception
title Multi-scale pooling learning for camouflaged instance segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20pooling%20learning%20for%20camouflaged%20instance%20segmentation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Li,%20Chen&rft.date=2024-03-01&rft.volume=54&rft.issue=5&rft.spage=4062&rft.epage=4076&rft.pages=4062-4076&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-024-05369-2&rft_dat=%3Cproquest_cross%3E3048243641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048243641&rft_id=info:pmid/&rfr_iscdi=true