The biobjective minimum‐cost perfect matching problem and Chinese postman problem

In this paper, we address the biobjective versions of the perfect matching problem (PMP) and the Chinese postman problem (CPP). Both problems are solved by means of integer formulations or separating blossom inequalities, exploiting the PMP relationship with the CPP. In both cases, we first find the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2024-09, Vol.31 (5), p.2988-3009
Hauptverfasser: Pozo, Miguel A., Puerto, Justo, Roldán, Ignacio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3009
container_issue 5
container_start_page 2988
container_title International transactions in operational research
container_volume 31
creator Pozo, Miguel A.
Puerto, Justo
Roldán, Ignacio
description In this paper, we address the biobjective versions of the perfect matching problem (PMP) and the Chinese postman problem (CPP). Both problems are solved by means of integer formulations or separating blossom inequalities, exploiting the PMP relationship with the CPP. In both cases, we first find the set of supported nondominated solutions and then we use them to obtain the nonsupported ones. The set of supported nondominated solutions are obtained solving scalarized integer formulations. To obtain the sets of nonsupported solutions, we resort to solving lexicographic problems based on adding additional linear constraints to the original problems. For this reason, we also characterize the combinatorial structure of the PMP vertices with one or two additional constraints. We also investigate when it is possible to use the PMP to solve CPP in the biobjective case. We report computational experiments comparing the different approaches and formulations based on different types of graphs with up to 700 nodes.
doi_str_mv 10.1111/itor.13363
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3047859621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047859621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3943-856da5909846b9a2b24a4f1c5c345d5fe8abcca19ccd292ae3f4c271016b8be83</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaTH4mWUrxp1AQtIK7kGQyNqXzYzJVuvMRfEafxNRR3Hk3F-75OId7ADjFaILTXPi-DRNMCCd7YIRpwTIiJdsHIyS5zDjC_BAcxbhCCGGGixF4WCwdNL41K2d7_-pg7Rtfb-rP9w_bxh52LlRJgbXu7dI3z7ALrVm7GuqmhNN0cdHBLpG1bn61Y3BQ6XV0Jz97DB6vrxbT22x-dzObXs4zSyQlmWC81EwiKSg3Uucmp5pW2DJLKCtZ5YQ21mosrS1zmWtHKmrzAqcnjDBOkDE4G3xT7svGxV6t2k1oUqQiiBaCSZ7jRJ0PlA1tjMFVqgu-1mGrMFK70tSuNPVdWoLhADvbNj7-oUJIiTkunhKCB-TNr932HzM1W9zdD7ZfCA57sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047859621</pqid></control><display><type>article</type><title>The biobjective minimum‐cost perfect matching problem and Chinese postman problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pozo, Miguel A. ; Puerto, Justo ; Roldán, Ignacio</creator><creatorcontrib>Pozo, Miguel A. ; Puerto, Justo ; Roldán, Ignacio</creatorcontrib><description>In this paper, we address the biobjective versions of the perfect matching problem (PMP) and the Chinese postman problem (CPP). Both problems are solved by means of integer formulations or separating blossom inequalities, exploiting the PMP relationship with the CPP. In both cases, we first find the set of supported nondominated solutions and then we use them to obtain the nonsupported ones. The set of supported nondominated solutions are obtained solving scalarized integer formulations. To obtain the sets of nonsupported solutions, we resort to solving lexicographic problems based on adding additional linear constraints to the original problems. For this reason, we also characterize the combinatorial structure of the PMP vertices with one or two additional constraints. We also investigate when it is possible to use the PMP to solve CPP in the biobjective case. We report computational experiments comparing the different approaches and formulations based on different types of graphs with up to 700 nodes.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.13363</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Apexes ; biobjective optimization ; Combinatorial analysis ; CPP ; Graph theory ; Integers ; Matching ; Pareto front ; PMP</subject><ispartof>International transactions in operational research, 2024-09, Vol.31 (5), p.2988-3009</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of International Federation of Operational Research Societies.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3943-856da5909846b9a2b24a4f1c5c345d5fe8abcca19ccd292ae3f4c271016b8be83</citedby><cites>FETCH-LOGICAL-c3943-856da5909846b9a2b24a4f1c5c345d5fe8abcca19ccd292ae3f4c271016b8be83</cites><orcidid>0000-0002-5798-6558 ; 0000-0003-4079-8419 ; 0000-0003-0949-8717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.13363$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.13363$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Pozo, Miguel A.</creatorcontrib><creatorcontrib>Puerto, Justo</creatorcontrib><creatorcontrib>Roldán, Ignacio</creatorcontrib><title>The biobjective minimum‐cost perfect matching problem and Chinese postman problem</title><title>International transactions in operational research</title><description>In this paper, we address the biobjective versions of the perfect matching problem (PMP) and the Chinese postman problem (CPP). Both problems are solved by means of integer formulations or separating blossom inequalities, exploiting the PMP relationship with the CPP. In both cases, we first find the set of supported nondominated solutions and then we use them to obtain the nonsupported ones. The set of supported nondominated solutions are obtained solving scalarized integer formulations. To obtain the sets of nonsupported solutions, we resort to solving lexicographic problems based on adding additional linear constraints to the original problems. For this reason, we also characterize the combinatorial structure of the PMP vertices with one or two additional constraints. We also investigate when it is possible to use the PMP to solve CPP in the biobjective case. We report computational experiments comparing the different approaches and formulations based on different types of graphs with up to 700 nodes.</description><subject>Apexes</subject><subject>biobjective optimization</subject><subject>Combinatorial analysis</subject><subject>CPP</subject><subject>Graph theory</subject><subject>Integers</subject><subject>Matching</subject><subject>Pareto front</subject><subject>PMP</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTpiaTH4mWUrxp1AQtIK7kGQyNqXzYzJVuvMRfEafxNRR3Hk3F-75OId7ADjFaILTXPi-DRNMCCd7YIRpwTIiJdsHIyS5zDjC_BAcxbhCCGGGixF4WCwdNL41K2d7_-pg7Rtfb-rP9w_bxh52LlRJgbXu7dI3z7ALrVm7GuqmhNN0cdHBLpG1bn61Y3BQ6XV0Jz97DB6vrxbT22x-dzObXs4zSyQlmWC81EwiKSg3Uucmp5pW2DJLKCtZ5YQ21mosrS1zmWtHKmrzAqcnjDBOkDE4G3xT7svGxV6t2k1oUqQiiBaCSZ7jRJ0PlA1tjMFVqgu-1mGrMFK70tSuNPVdWoLhADvbNj7-oUJIiTkunhKCB-TNr932HzM1W9zdD7ZfCA57sw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Pozo, Miguel A.</creator><creator>Puerto, Justo</creator><creator>Roldán, Ignacio</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5798-6558</orcidid><orcidid>https://orcid.org/0000-0003-4079-8419</orcidid><orcidid>https://orcid.org/0000-0003-0949-8717</orcidid></search><sort><creationdate>202409</creationdate><title>The biobjective minimum‐cost perfect matching problem and Chinese postman problem</title><author>Pozo, Miguel A. ; Puerto, Justo ; Roldán, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3943-856da5909846b9a2b24a4f1c5c345d5fe8abcca19ccd292ae3f4c271016b8be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>biobjective optimization</topic><topic>Combinatorial analysis</topic><topic>CPP</topic><topic>Graph theory</topic><topic>Integers</topic><topic>Matching</topic><topic>Pareto front</topic><topic>PMP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pozo, Miguel A.</creatorcontrib><creatorcontrib>Puerto, Justo</creatorcontrib><creatorcontrib>Roldán, Ignacio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pozo, Miguel A.</au><au>Puerto, Justo</au><au>Roldán, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The biobjective minimum‐cost perfect matching problem and Chinese postman problem</atitle><jtitle>International transactions in operational research</jtitle><date>2024-09</date><risdate>2024</risdate><volume>31</volume><issue>5</issue><spage>2988</spage><epage>3009</epage><pages>2988-3009</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>In this paper, we address the biobjective versions of the perfect matching problem (PMP) and the Chinese postman problem (CPP). Both problems are solved by means of integer formulations or separating blossom inequalities, exploiting the PMP relationship with the CPP. In both cases, we first find the set of supported nondominated solutions and then we use them to obtain the nonsupported ones. The set of supported nondominated solutions are obtained solving scalarized integer formulations. To obtain the sets of nonsupported solutions, we resort to solving lexicographic problems based on adding additional linear constraints to the original problems. For this reason, we also characterize the combinatorial structure of the PMP vertices with one or two additional constraints. We also investigate when it is possible to use the PMP to solve CPP in the biobjective case. We report computational experiments comparing the different approaches and formulations based on different types of graphs with up to 700 nodes.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.13363</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5798-6558</orcidid><orcidid>https://orcid.org/0000-0003-4079-8419</orcidid><orcidid>https://orcid.org/0000-0003-0949-8717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2024-09, Vol.31 (5), p.2988-3009
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_3047859621
source Wiley Online Library Journals Frontfile Complete
subjects Apexes
biobjective optimization
Combinatorial analysis
CPP
Graph theory
Integers
Matching
Pareto front
PMP
title The biobjective minimum‐cost perfect matching problem and Chinese postman problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20biobjective%20minimum%E2%80%90cost%20perfect%20matching%20problem%20and%20Chinese%20postman%20problem&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Pozo,%20Miguel%20A.&rft.date=2024-09&rft.volume=31&rft.issue=5&rft.spage=2988&rft.epage=3009&rft.pages=2988-3009&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.13363&rft_dat=%3Cproquest_cross%3E3047859621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047859621&rft_id=info:pmid/&rfr_iscdi=true