S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification
The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of comp...
Gespeichert in:
Veröffentlicht in: | Wangji Wanglu Jishu Xuekan = Journal of Internet Technology 2023-11, Vol.24 (6), p.1211-1220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 6 |
container_start_page | 1211 |
container_title | Wangji Wanglu Jishu Xuekan = Journal of Internet Technology |
container_volume | 24 |
creator | Feng Wang, Feng Wang Feng Wang, Jing Zheng Jing Zheng, Jiawei Zeng Jiawei Zeng, Xincong Zhong Xincong Zhong, Zhao Li |
description | The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of computing resources. The experimental results on our fish datasets show that YOLOv5x has a great performance at accuracy which the best mean average precision (mAP) can reach 90.07% and YOLOv5s is conspicuous in recognition speed compared to other models. In this paper, a lighter object detection model based on YOLOv5(Referred to as S2F-YOLO) is proposed to overcome these deficiencies. Under the premise of ensuring a small loss of accuracy, the object recognition speed is greatly accelerated. The S2F-YOLO is applied to commercial fish species detection and the other popular algorithms comparison, we obtained incredible results when the mAP is 2.24% lower than that of YOLOv5x, the FPS reaches 216M, which is nearly half faster than YOLOv5s. When compared with other detectors, our algorithm also shows better overall performance, which is more suitable for actual applications. |
doi_str_mv | 10.53106/160792642023112406004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3047345279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047345279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-72cad1df070805a39bb973e4012df83d5de4fd78e4f27999836e0cd6756f297e3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKW_gCxxDqwfsWNuVaFQqVIOLQdOUeIHddUmxU6R4OtxKAcOXHZWu7Ozo0HomsBtzgiIOyJAKio4BcoIoRwEAD9Do2GeDYvzP_0lmsToGwBKcsooGaHVis6z13JZ3uNpi8tD7_f-yxpcNlure_xg-wS-a_Ha6k3r348Wuy7gxf4Qug_fvuG5jxs829VJ13ldD9wrdOHqXbSTXxyjl_njevacLcunxWy6zDRjpM8k1bUhxoGEAvKaqaZRklkOhBpXMJMby52RRapUKqUKJixoI2QuHFXSsjG6OekmL8lY7Kttdwxtelkx4JLxPN0lljixdOhiDNZVh-D3dfisCFQ_GVb_Zsi-ARYwYj8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047345279</pqid></control><display><type>article</type><title>S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification</title><source>Alma/SFX Local Collection</source><creator>Feng Wang, Feng Wang ; Feng Wang, Jing Zheng ; Jing Zheng, Jiawei Zeng ; Jiawei Zeng, Xincong Zhong ; Xincong Zhong, Zhao Li</creator><creatorcontrib>Feng Wang, Feng Wang ; Feng Wang, Jing Zheng ; Jing Zheng, Jiawei Zeng ; Jiawei Zeng, Xincong Zhong ; Xincong Zhong, Zhao Li</creatorcontrib><description>The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of computing resources. The experimental results on our fish datasets show that YOLOv5x has a great performance at accuracy which the best mean average precision (mAP) can reach 90.07% and YOLOv5s is conspicuous in recognition speed compared to other models. In this paper, a lighter object detection model based on YOLOv5(Referred to as S2F-YOLO) is proposed to overcome these deficiencies. Under the premise of ensuring a small loss of accuracy, the object recognition speed is greatly accelerated. The S2F-YOLO is applied to commercial fish species detection and the other popular algorithms comparison, we obtained incredible results when the mAP is 2.24% lower than that of YOLOv5x, the FPS reaches 216M, which is nearly half faster than YOLOv5s. When compared with other detectors, our algorithm also shows better overall performance, which is more suitable for actual applications.</description><identifier>ISSN: 1607-9264</identifier><identifier>EISSN: 1607-9264</identifier><identifier>EISSN: 2079-4029</identifier><identifier>DOI: 10.53106/160792642023112406004</identifier><language>eng</language><publisher>Hualien: National Dong Hwa University, Computer Center</publisher><subject>Accuracy ; Algorithms ; Fish ; Machine learning ; Object recognition</subject><ispartof>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2023-11, Vol.24 (6), p.1211-1220</ispartof><rights>Copyright National Dong Hwa University, Computer Center 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-72cad1df070805a39bb973e4012df83d5de4fd78e4f27999836e0cd6756f297e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Feng Wang, Feng Wang</creatorcontrib><creatorcontrib>Feng Wang, Jing Zheng</creatorcontrib><creatorcontrib>Jing Zheng, Jiawei Zeng</creatorcontrib><creatorcontrib>Jiawei Zeng, Xincong Zhong</creatorcontrib><creatorcontrib>Xincong Zhong, Zhao Li</creatorcontrib><title>S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification</title><title>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</title><description>The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of computing resources. The experimental results on our fish datasets show that YOLOv5x has a great performance at accuracy which the best mean average precision (mAP) can reach 90.07% and YOLOv5s is conspicuous in recognition speed compared to other models. In this paper, a lighter object detection model based on YOLOv5(Referred to as S2F-YOLO) is proposed to overcome these deficiencies. Under the premise of ensuring a small loss of accuracy, the object recognition speed is greatly accelerated. The S2F-YOLO is applied to commercial fish species detection and the other popular algorithms comparison, we obtained incredible results when the mAP is 2.24% lower than that of YOLOv5x, the FPS reaches 216M, which is nearly half faster than YOLOv5s. When compared with other detectors, our algorithm also shows better overall performance, which is more suitable for actual applications.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Fish</subject><subject>Machine learning</subject><subject>Object recognition</subject><issn>1607-9264</issn><issn>1607-9264</issn><issn>2079-4029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptUMtOwzAQtBBIVKW_gCxxDqwfsWNuVaFQqVIOLQdOUeIHddUmxU6R4OtxKAcOXHZWu7Ozo0HomsBtzgiIOyJAKio4BcoIoRwEAD9Do2GeDYvzP_0lmsToGwBKcsooGaHVis6z13JZ3uNpi8tD7_f-yxpcNlure_xg-wS-a_Ha6k3r348Wuy7gxf4Qug_fvuG5jxs829VJ13ldD9wrdOHqXbSTXxyjl_njevacLcunxWy6zDRjpM8k1bUhxoGEAvKaqaZRklkOhBpXMJMby52RRapUKqUKJixoI2QuHFXSsjG6OekmL8lY7Kttdwxtelkx4JLxPN0lljixdOhiDNZVh-D3dfisCFQ_GVb_Zsi-ARYwYj8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Feng Wang, Feng Wang</creator><creator>Feng Wang, Jing Zheng</creator><creator>Jing Zheng, Jiawei Zeng</creator><creator>Jiawei Zeng, Xincong Zhong</creator><creator>Xincong Zhong, Zhao Li</creator><general>National Dong Hwa University, Computer Center</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification</title><author>Feng Wang, Feng Wang ; Feng Wang, Jing Zheng ; Jing Zheng, Jiawei Zeng ; Jiawei Zeng, Xincong Zhong ; Xincong Zhong, Zhao Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-72cad1df070805a39bb973e4012df83d5de4fd78e4f27999836e0cd6756f297e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Fish</topic><topic>Machine learning</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng Wang, Feng Wang</creatorcontrib><creatorcontrib>Feng Wang, Jing Zheng</creatorcontrib><creatorcontrib>Jing Zheng, Jiawei Zeng</creatorcontrib><creatorcontrib>Jiawei Zeng, Xincong Zhong</creatorcontrib><creatorcontrib>Xincong Zhong, Zhao Li</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng Wang, Feng Wang</au><au>Feng Wang, Jing Zheng</au><au>Jing Zheng, Jiawei Zeng</au><au>Jiawei Zeng, Xincong Zhong</au><au>Xincong Zhong, Zhao Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification</atitle><jtitle>Wangji Wanglu Jishu Xuekan = Journal of Internet Technology</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1211</spage><epage>1220</epage><pages>1211-1220</pages><issn>1607-9264</issn><eissn>1607-9264</eissn><eissn>2079-4029</eissn><abstract>The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of computing resources. The experimental results on our fish datasets show that YOLOv5x has a great performance at accuracy which the best mean average precision (mAP) can reach 90.07% and YOLOv5s is conspicuous in recognition speed compared to other models. In this paper, a lighter object detection model based on YOLOv5(Referred to as S2F-YOLO) is proposed to overcome these deficiencies. Under the premise of ensuring a small loss of accuracy, the object recognition speed is greatly accelerated. The S2F-YOLO is applied to commercial fish species detection and the other popular algorithms comparison, we obtained incredible results when the mAP is 2.24% lower than that of YOLOv5x, the FPS reaches 216M, which is nearly half faster than YOLOv5s. When compared with other detectors, our algorithm also shows better overall performance, which is more suitable for actual applications.</abstract><cop>Hualien</cop><pub>National Dong Hwa University, Computer Center</pub><doi>10.53106/160792642023112406004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-9264 |
ispartof | Wangji Wanglu Jishu Xuekan = Journal of Internet Technology, 2023-11, Vol.24 (6), p.1211-1220 |
issn | 1607-9264 1607-9264 2079-4029 |
language | eng |
recordid | cdi_proquest_journals_3047345279 |
source | Alma/SFX Local Collection |
subjects | Accuracy Algorithms Fish Machine learning Object recognition |
title | S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S2F-YOLO:%20An%20Optimized%20Object%20Detection%20Technique%20for%20Improving%20Fish%20Classification&rft.jtitle=Wangji%20Wanglu%20Jishu%20Xuekan%20=%20Journal%20of%20Internet%20Technology&rft.au=Feng%20Wang,%20Feng%20Wang&rft.date=2023-11-01&rft.volume=24&rft.issue=6&rft.spage=1211&rft.epage=1220&rft.pages=1211-1220&rft.issn=1607-9264&rft.eissn=1607-9264&rft_id=info:doi/10.53106/160792642023112406004&rft_dat=%3Cproquest_cross%3E3047345279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047345279&rft_id=info:pmid/&rfr_iscdi=true |