The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path

— Remote control of high-intensity laser beams in the atmosphere is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a las...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric and oceanic optics 2024-02, Vol.37 (1), p.1-6
Hauptverfasser: Apeksimov, D. V., Babushkin, P. A., Zemlyanov, A. A., Kabanov, A. M., Kochetov, D. I., Oshlakov, V. K., Petrov, A. V., Khoroshaeva, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 1
container_title Atmospheric and oceanic optics
container_volume 37
creator Apeksimov, D. V.
Babushkin, P. A.
Zemlyanov, A. A.
Kabanov, A. M.
Kochetov, D. I.
Oshlakov, V. K.
Petrov, A. V.
Khoroshaeva, E. E.
description — Remote control of high-intensity laser beams in the atmosphere is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a laser radiation propagation path on the characteristics of the filamentation domain and generation of high-intensity plasma-free channels for laser beams 2.5 and 5 cm diameter, including under the phase control of the transverse beam structure with a deformable mirror. In the presence of turbulence, the beginning of multiple filamentation domain approaches, however, insignificantly (
doi_str_mv 10.1134/S102485602370001X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3047318688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047318688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-67d2f7db5be0c8f31f9ab0f6748d00f084b7051e176b929cefd73ec6233c6013</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWP98AG8Bz6uTzW6ye5RibaFiwR68LdnspN3SJjXJHvoh_M6mVPAgnmaG93tv4BFyx-CBMV48vjPIi6oUkHMJAOzjjIxykJABr_k5GR3l7KhfkqsQNgCirEs2Il_LNdJnY1BH6gxdDr4dtmg1UmfpC1r0KvZpTdq0X62zmY1oQx8PdJ7OSMdrZS1uA-0G39sVneAuuoDa2Y7OVUBPF8M2IF14t1erU5baukQqygCyV4yJeeoTp-L6hlwYlfDbn3lNlpPn5Xiazd9eZuOneaZzUcVMyC43smvLFkFXhjNTqxaMkEXVARioilZCyZBJ0dZ5rdF0kqMWOedaAOPX5P4Uu_fuc8AQm40bvE0fGw6F5KwSVZUodqK0dyF4NM3e9zvlDw2D5lh686f05MlPnrA_1oH-N_l_0zfALYPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047318688</pqid></control><display><type>article</type><title>The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path</title><source>SpringerLink Journals - AutoHoldings</source><creator>Apeksimov, D. V. ; Babushkin, P. A. ; Zemlyanov, A. A. ; Kabanov, A. M. ; Kochetov, D. I. ; Oshlakov, V. K. ; Petrov, A. V. ; Khoroshaeva, E. E.</creator><creatorcontrib>Apeksimov, D. V. ; Babushkin, P. A. ; Zemlyanov, A. A. ; Kabanov, A. M. ; Kochetov, D. I. ; Oshlakov, V. K. ; Petrov, A. V. ; Khoroshaeva, E. E.</creatorcontrib><description>— Remote control of high-intensity laser beams in the atmosphere is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a laser radiation propagation path on the characteristics of the filamentation domain and generation of high-intensity plasma-free channels for laser beams 2.5 and 5 cm diameter, including under the phase control of the transverse beam structure with a deformable mirror. In the presence of turbulence, the beginning of multiple filamentation domain approaches, however, insignificantly (&lt;10% of the path length), a radiation source. More important is that a turbulent layer formed at the beginning of a path results in a multiple increase in the number of high-intensity (mean intensity is ∼10 11 –10 12 W/cm 2 ) light channels in a laser beam during its nonlinear propagation, which induce two-photon fluorescence of dyes at a distance of longer than 100 m from the radiation source with the signal level sufficient for its recording by a lidar scheme. This laser beam structure can be used for sounding natural and anthropogenic aerosols.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S102485602370001X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Anthropogenic factors ; Atmospheric optics ; Atmospheric sounding ; Atmospheric turbulence ; Channels ; Deformable mirrors ; Dyes ; Femtosecond pulsed lasers ; Femtosecond pulses ; Fluorescence ; Formability ; High power lasers ; Laser beams ; Lasers ; Lidar ; Luminous intensity ; Nonlinear Optics ; Optical Devices ; Optics ; Phase control ; Photonics ; Physics ; Physics and Astronomy ; Propagation ; Pulse propagation ; Radiation ; Radiation sources ; Remote control ; Turbulence</subject><ispartof>Atmospheric and oceanic optics, 2024-02, Vol.37 (1), p.1-6</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1024-8560, Atmospheric and Oceanic Optics, 2024, Vol. 37, No. 1, pp. 1–6. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2023, published in Optika Atmosfery i Okeana.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-67d2f7db5be0c8f31f9ab0f6748d00f084b7051e176b929cefd73ec6233c6013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S102485602370001X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S102485602370001X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Apeksimov, D. V.</creatorcontrib><creatorcontrib>Babushkin, P. A.</creatorcontrib><creatorcontrib>Zemlyanov, A. A.</creatorcontrib><creatorcontrib>Kabanov, A. M.</creatorcontrib><creatorcontrib>Kochetov, D. I.</creatorcontrib><creatorcontrib>Oshlakov, V. K.</creatorcontrib><creatorcontrib>Petrov, A. V.</creatorcontrib><creatorcontrib>Khoroshaeva, E. E.</creatorcontrib><title>The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>— Remote control of high-intensity laser beams in the atmosphere is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a laser radiation propagation path on the characteristics of the filamentation domain and generation of high-intensity plasma-free channels for laser beams 2.5 and 5 cm diameter, including under the phase control of the transverse beam structure with a deformable mirror. In the presence of turbulence, the beginning of multiple filamentation domain approaches, however, insignificantly (&lt;10% of the path length), a radiation source. More important is that a turbulent layer formed at the beginning of a path results in a multiple increase in the number of high-intensity (mean intensity is ∼10 11 –10 12 W/cm 2 ) light channels in a laser beam during its nonlinear propagation, which induce two-photon fluorescence of dyes at a distance of longer than 100 m from the radiation source with the signal level sufficient for its recording by a lidar scheme. This laser beam structure can be used for sounding natural and anthropogenic aerosols.</description><subject>Anthropogenic factors</subject><subject>Atmospheric optics</subject><subject>Atmospheric sounding</subject><subject>Atmospheric turbulence</subject><subject>Channels</subject><subject>Deformable mirrors</subject><subject>Dyes</subject><subject>Femtosecond pulsed lasers</subject><subject>Femtosecond pulses</subject><subject>Fluorescence</subject><subject>Formability</subject><subject>High power lasers</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Luminous intensity</subject><subject>Nonlinear Optics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Phase control</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Pulse propagation</subject><subject>Radiation</subject><subject>Radiation sources</subject><subject>Remote control</subject><subject>Turbulence</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWP98AG8Bz6uTzW6ye5RibaFiwR68LdnspN3SJjXJHvoh_M6mVPAgnmaG93tv4BFyx-CBMV48vjPIi6oUkHMJAOzjjIxykJABr_k5GR3l7KhfkqsQNgCirEs2Il_LNdJnY1BH6gxdDr4dtmg1UmfpC1r0KvZpTdq0X62zmY1oQx8PdJ7OSMdrZS1uA-0G39sVneAuuoDa2Y7OVUBPF8M2IF14t1erU5baukQqygCyV4yJeeoTp-L6hlwYlfDbn3lNlpPn5Xiazd9eZuOneaZzUcVMyC43smvLFkFXhjNTqxaMkEXVARioilZCyZBJ0dZ5rdF0kqMWOedaAOPX5P4Uu_fuc8AQm40bvE0fGw6F5KwSVZUodqK0dyF4NM3e9zvlDw2D5lh686f05MlPnrA_1oH-N_l_0zfALYPM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Apeksimov, D. V.</creator><creator>Babushkin, P. A.</creator><creator>Zemlyanov, A. A.</creator><creator>Kabanov, A. M.</creator><creator>Kochetov, D. I.</creator><creator>Oshlakov, V. K.</creator><creator>Petrov, A. V.</creator><creator>Khoroshaeva, E. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20240201</creationdate><title>The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path</title><author>Apeksimov, D. V. ; Babushkin, P. A. ; Zemlyanov, A. A. ; Kabanov, A. M. ; Kochetov, D. I. ; Oshlakov, V. K. ; Petrov, A. V. ; Khoroshaeva, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-67d2f7db5be0c8f31f9ab0f6748d00f084b7051e176b929cefd73ec6233c6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anthropogenic factors</topic><topic>Atmospheric optics</topic><topic>Atmospheric sounding</topic><topic>Atmospheric turbulence</topic><topic>Channels</topic><topic>Deformable mirrors</topic><topic>Dyes</topic><topic>Femtosecond pulsed lasers</topic><topic>Femtosecond pulses</topic><topic>Fluorescence</topic><topic>Formability</topic><topic>High power lasers</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Luminous intensity</topic><topic>Nonlinear Optics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Phase control</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Pulse propagation</topic><topic>Radiation</topic><topic>Radiation sources</topic><topic>Remote control</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apeksimov, D. V.</creatorcontrib><creatorcontrib>Babushkin, P. A.</creatorcontrib><creatorcontrib>Zemlyanov, A. A.</creatorcontrib><creatorcontrib>Kabanov, A. M.</creatorcontrib><creatorcontrib>Kochetov, D. I.</creatorcontrib><creatorcontrib>Oshlakov, V. K.</creatorcontrib><creatorcontrib>Petrov, A. V.</creatorcontrib><creatorcontrib>Khoroshaeva, E. E.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apeksimov, D. V.</au><au>Babushkin, P. A.</au><au>Zemlyanov, A. A.</au><au>Kabanov, A. M.</au><au>Kochetov, D. I.</au><au>Oshlakov, V. K.</au><au>Petrov, A. V.</au><au>Khoroshaeva, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>37</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>— Remote control of high-intensity laser beams in the atmosphere is an important problem of atmospheric optics. It is of special interest for atmospheric sounding, where turbulence can affect beam propagation. We experimentally study the effect of a turbulent layer produced at the beginning of a laser radiation propagation path on the characteristics of the filamentation domain and generation of high-intensity plasma-free channels for laser beams 2.5 and 5 cm diameter, including under the phase control of the transverse beam structure with a deformable mirror. In the presence of turbulence, the beginning of multiple filamentation domain approaches, however, insignificantly (&lt;10% of the path length), a radiation source. More important is that a turbulent layer formed at the beginning of a path results in a multiple increase in the number of high-intensity (mean intensity is ∼10 11 –10 12 W/cm 2 ) light channels in a laser beam during its nonlinear propagation, which induce two-photon fluorescence of dyes at a distance of longer than 100 m from the radiation source with the signal level sufficient for its recording by a lidar scheme. This laser beam structure can be used for sounding natural and anthropogenic aerosols.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S102485602370001X</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1024-8560
ispartof Atmospheric and oceanic optics, 2024-02, Vol.37 (1), p.1-6
issn 1024-8560
2070-0393
language eng
recordid cdi_proquest_journals_3047318688
source SpringerLink Journals - AutoHoldings
subjects Anthropogenic factors
Atmospheric optics
Atmospheric sounding
Atmospheric turbulence
Channels
Deformable mirrors
Dyes
Femtosecond pulsed lasers
Femtosecond pulses
Fluorescence
Formability
High power lasers
Laser beams
Lasers
Lidar
Luminous intensity
Nonlinear Optics
Optical Devices
Optics
Phase control
Photonics
Physics
Physics and Astronomy
Propagation
Pulse propagation
Radiation
Radiation sources
Remote control
Turbulence
title The Effect of Turbulence on Generation of High-Intensity Light Channels during Femtosecond Laser Pulse Propagation along a 100-Meter Air Path
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Turbulence%20on%20Generation%20of%20High-Intensity%20Light%20Channels%20during%20Femtosecond%20Laser%20Pulse%20Propagation%20along%20a%20100-Meter%20Air%20Path&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Apeksimov,%20D.%20V.&rft.date=2024-02-01&rft.volume=37&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S102485602370001X&rft_dat=%3Cproquest_cross%3E3047318688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047318688&rft_id=info:pmid/&rfr_iscdi=true