Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities

In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2024-05, Vol.89 (1), p.143-170
Hauptverfasser: Yang, Zhen-Ping, Zhao, Yong, Lin, Gui-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 1
container_start_page 143
container_title Journal of global optimization
container_volume 89
creator Yang, Zhen-Ping
Zhao, Yong
Lin, Gui-Hua
description In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve O ( 1 / t ) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.
doi_str_mv 10.1007/s10898-023-01346-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3047006937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047006937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-209b34eea93408088d365157eaa50311a2be57561558567ef112aefd5742a4ae3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMGLeg3ZdrqbpW26SVbUX2_XCt48DQzP-zLzEHLJ4ZoDFDeRQ6lLBkIy4DLLGRyRGVeFZELz_JjMQAvFFAA_JWcxbgFAl0rMSPNmg7OrFmm03dAii-4LqR-S61xMrqKdC8EHWmOssE_UtmsfXNp0tBm3MflqY3-5D6zp-6EtOd_blroed3vbuuQwnpOTxrYRL37nnLze370sHtny-eFpcbtkleQ6MQF6JTNEq2UGJZRlLXM1voHWKpCcW7FCVaicK1WqvMCGc2GxqVWRCZtZlHNyNfUOwe_2GJPZ-n0Yr4lGQlYA5FoWIyUmqgo-xoCNGYLrbPg0HMzBp5l8mtGn-fFpYAzJKRRHuF9j-Kv-J_UNGvB5yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3047006937</pqid></control><display><type>article</type><title>Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Zhen-Ping ; Zhao, Yong ; Lin, Gui-Hua</creator><creatorcontrib>Yang, Zhen-Ping ; Zhao, Yong ; Lin, Gui-Hua</creatorcontrib><description>In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve O ( 1 / t ) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-023-01346-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Computer Science ; Convergence ; Inequalities ; Mapping ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Real Functions</subject><ispartof>Journal of global optimization, 2024-05, Vol.89 (1), p.143-170</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-209b34eea93408088d365157eaa50311a2be57561558567ef112aefd5742a4ae3</citedby><cites>FETCH-LOGICAL-c319t-209b34eea93408088d365157eaa50311a2be57561558567ef112aefd5742a4ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-023-01346-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-023-01346-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yang, Zhen-Ping</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Lin, Gui-Hua</creatorcontrib><title>Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve O ( 1 / t ) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Inequalities</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMGLeg3ZdrqbpW26SVbUX2_XCt48DQzP-zLzEHLJ4ZoDFDeRQ6lLBkIy4DLLGRyRGVeFZELz_JjMQAvFFAA_JWcxbgFAl0rMSPNmg7OrFmm03dAii-4LqR-S61xMrqKdC8EHWmOssE_UtmsfXNp0tBm3MflqY3-5D6zp-6EtOd_blroed3vbuuQwnpOTxrYRL37nnLze370sHtny-eFpcbtkleQ6MQF6JTNEq2UGJZRlLXM1voHWKpCcW7FCVaicK1WqvMCGc2GxqVWRCZtZlHNyNfUOwe_2GJPZ-n0Yr4lGQlYA5FoWIyUmqgo-xoCNGYLrbPg0HMzBp5l8mtGn-fFpYAzJKRRHuF9j-Kv-J_UNGvB5yw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yang, Zhen-Ping</creator><creator>Zhao, Yong</creator><creator>Lin, Gui-Hua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240501</creationdate><title>Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities</title><author>Yang, Zhen-Ping ; Zhao, Yong ; Lin, Gui-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-209b34eea93408088d365157eaa50311a2be57561558567ef112aefd5742a4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Inequalities</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhen-Ping</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Lin, Gui-Hua</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhen-Ping</au><au>Zhao, Yong</au><au>Lin, Gui-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>89</volume><issue>1</issue><spage>143</spage><epage>170</epage><pages>143-170</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve O ( 1 / t ) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-023-01346-0</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2024-05, Vol.89 (1), p.143-170
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_3047006937
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Computer Science
Convergence
Inequalities
Mapping
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
title Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20sample-size%20optimistic%20mirror%20descent%20algorithm%20for%20stochastic%20mixed%20variational%20inequalities&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Yang,%20Zhen-Ping&rft.date=2024-05-01&rft.volume=89&rft.issue=1&rft.spage=143&rft.epage=170&rft.pages=143-170&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-023-01346-0&rft_dat=%3Cproquest_cross%3E3047006937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3047006937&rft_id=info:pmid/&rfr_iscdi=true