Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing

This workshop paper presents a critical examination of the integration of Generative AI (Gen AI) into the academic writing process, focusing on the use of AI as a collaborative tool. It contrasts the performance and interaction of two AI models, Gemini and ChatGPT, through a collaborative inquiry ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Tu, Joseph, Hadan, Hilda, Wang, Derrick M, Sgandurra, Sabrina A, Reza Hadi Mogavi, Nacke, Lennart E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tu, Joseph
Hadan, Hilda
Wang, Derrick M
Sgandurra, Sabrina A
Reza Hadi Mogavi
Nacke, Lennart E
description This workshop paper presents a critical examination of the integration of Generative AI (Gen AI) into the academic writing process, focusing on the use of AI as a collaborative tool. It contrasts the performance and interaction of two AI models, Gemini and ChatGPT, through a collaborative inquiry approach where researchers engage in facilitated sessions to design prompts that elicit specific AI responses for crafting research outlines. This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work. Preliminary findings suggest that prompt variation significantly affects output quality and reveals distinct capabilities and constraints of each model. The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models, ultimately aiming to enhance AI-assisted academic writing and prompt a deeper dialogue within the HCI community.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3046998290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046998290</sourcerecordid><originalsourceid>FETCH-proquest_journals_30469982903</originalsourceid><addsrcrecordid>eNqNjEELgjAYhkcQJOV_-KCzsDY17SZi1K1D1FGWTZ3MfTYn9PMrqHunF57n4Z0Rj3G-CZKQsQXxx7GjlLJ4y6KIe-SSTU0vjVOmAddKyCbXot1B8Rw02h89ofs0QgPWkB0hR63FDa1wCg0oA1kl7rJXFVyt-nytyLwWepT-d5dkvS_O-SEYLD4mObqyw8matyo5DeM0TVhK-X_VC8VBQK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046998290</pqid></control><display><type>article</type><title>Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing</title><source>Free E- Journals</source><creator>Tu, Joseph ; Hadan, Hilda ; Wang, Derrick M ; Sgandurra, Sabrina A ; Reza Hadi Mogavi ; Nacke, Lennart E</creator><creatorcontrib>Tu, Joseph ; Hadan, Hilda ; Wang, Derrick M ; Sgandurra, Sabrina A ; Reza Hadi Mogavi ; Nacke, Lennart E</creatorcontrib><description>This workshop paper presents a critical examination of the integration of Generative AI (Gen AI) into the academic writing process, focusing on the use of AI as a collaborative tool. It contrasts the performance and interaction of two AI models, Gemini and ChatGPT, through a collaborative inquiry approach where researchers engage in facilitated sessions to design prompts that elicit specific AI responses for crafting research outlines. This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work. Preliminary findings suggest that prompt variation significantly affects output quality and reveals distinct capabilities and constraints of each model. The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models, ultimately aiming to enhance AI-assisted academic writing and prompt a deeper dialogue within the HCI community.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraint modelling ; Generative artificial intelligence ; Human-computer interface</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tu, Joseph</creatorcontrib><creatorcontrib>Hadan, Hilda</creatorcontrib><creatorcontrib>Wang, Derrick M</creatorcontrib><creatorcontrib>Sgandurra, Sabrina A</creatorcontrib><creatorcontrib>Reza Hadi Mogavi</creatorcontrib><creatorcontrib>Nacke, Lennart E</creatorcontrib><title>Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing</title><title>arXiv.org</title><description>This workshop paper presents a critical examination of the integration of Generative AI (Gen AI) into the academic writing process, focusing on the use of AI as a collaborative tool. It contrasts the performance and interaction of two AI models, Gemini and ChatGPT, through a collaborative inquiry approach where researchers engage in facilitated sessions to design prompts that elicit specific AI responses for crafting research outlines. This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work. Preliminary findings suggest that prompt variation significantly affects output quality and reveals distinct capabilities and constraints of each model. The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models, ultimately aiming to enhance AI-assisted academic writing and prompt a deeper dialogue within the HCI community.</description><subject>Constraint modelling</subject><subject>Generative artificial intelligence</subject><subject>Human-computer interface</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEELgjAYhkcQJOV_-KCzsDY17SZi1K1D1FGWTZ3MfTYn9PMrqHunF57n4Z0Rj3G-CZKQsQXxx7GjlLJ4y6KIe-SSTU0vjVOmAddKyCbXot1B8Rw02h89ofs0QgPWkB0hR63FDa1wCg0oA1kl7rJXFVyt-nytyLwWepT-d5dkvS_O-SEYLD4mObqyw8matyo5DeM0TVhK-X_VC8VBQK8</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Tu, Joseph</creator><creator>Hadan, Hilda</creator><creator>Wang, Derrick M</creator><creator>Sgandurra, Sabrina A</creator><creator>Reza Hadi Mogavi</creator><creator>Nacke, Lennart E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240423</creationdate><title>Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing</title><author>Tu, Joseph ; Hadan, Hilda ; Wang, Derrick M ; Sgandurra, Sabrina A ; Reza Hadi Mogavi ; Nacke, Lennart E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30469982903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraint modelling</topic><topic>Generative artificial intelligence</topic><topic>Human-computer interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Tu, Joseph</creatorcontrib><creatorcontrib>Hadan, Hilda</creatorcontrib><creatorcontrib>Wang, Derrick M</creatorcontrib><creatorcontrib>Sgandurra, Sabrina A</creatorcontrib><creatorcontrib>Reza Hadi Mogavi</creatorcontrib><creatorcontrib>Nacke, Lennart E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Joseph</au><au>Hadan, Hilda</au><au>Wang, Derrick M</au><au>Sgandurra, Sabrina A</au><au>Reza Hadi Mogavi</au><au>Nacke, Lennart E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing</atitle><jtitle>arXiv.org</jtitle><date>2024-04-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This workshop paper presents a critical examination of the integration of Generative AI (Gen AI) into the academic writing process, focusing on the use of AI as a collaborative tool. It contrasts the performance and interaction of two AI models, Gemini and ChatGPT, through a collaborative inquiry approach where researchers engage in facilitated sessions to design prompts that elicit specific AI responses for crafting research outlines. This case study highlights the importance of prompt design, output analysis, and recognizing the AI's limitations to ensure responsible and effective AI integration in scholarly work. Preliminary findings suggest that prompt variation significantly affects output quality and reveals distinct capabilities and constraints of each model. The paper contributes to the field of Human-Computer Interaction by exploring effective prompt strategies and providing a comparative analysis of Gen AI models, ultimately aiming to enhance AI-assisted academic writing and prompt a deeper dialogue within the HCI community.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3046998290
source Free E- Journals
subjects Constraint modelling
Generative artificial intelligence
Human-computer interface
title Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Augmenting%20the%20Author:%20Exploring%20the%20Potential%20of%20AI%20Collaboration%20in%20Academic%20Writing&rft.jtitle=arXiv.org&rft.au=Tu,%20Joseph&rft.date=2024-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3046998290%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046998290&rft_id=info:pmid/&rfr_iscdi=true