Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation
The NIR-to-RGB spectral domain translation is a formidable task due to the inherent spectral mapping ambiguities within NIR inputs and RGB outputs. Thus, existing methods fail to reconcile the tension between maintaining texture detail fidelity and achieving diverse color variations. In this paper,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhai, Huiyu Chen, Mo Yang, Xingxing Kang, Gusheng |
description | The NIR-to-RGB spectral domain translation is a formidable task due to the inherent spectral mapping ambiguities within NIR inputs and RGB outputs. Thus, existing methods fail to reconcile the tension between maintaining texture detail fidelity and achieving diverse color variations. In this paper, we propose a Multi-scale HSV Color Feature Embedding Network (MCFNet) that decomposes the mapping process into three sub-tasks, including NIR texture maintenance, coarse geometry reconstruction, and RGB color prediction. Thus, we propose three key modules for each corresponding sub-task: the Texture Preserving Block (TPB), the HSV Color Feature Embedding Module (HSV-CFEM), and the Geometry Reconstruction Module (GRM). These modules contribute to our MCFNet methodically tackling spectral translation through a series of escalating resolutions, progressively enriching images with color and texture fidelity in a scale-coherent fashion. The proposed MCFNet demonstrates substantial performance gains over the NIR image colorization task. Code is released at: https://github.com/AlexYangxx/MCFNet. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3046996951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046996951</sourcerecordid><originalsourceid>FETCH-proquest_journals_30469969513</originalsourceid><addsrcrecordid>eNqNik0LgjAAQEcQJOV_GHQe6KaW10SzQx1Ugk6ydNpkOtvHoX-fh35ApwfvvRVwMCE-OgYYb4Cr9eB5Ho4OOAyJAx5XKwxHuqGCwby8w0QKqWDGqLGKwXR8srblUw-7xea8f6GOt0xw84G3S4GMRMX5BMuZNUbZEVaKTlpQw-W0A-uOCs3cH7dgn6VVkqNZybdl2tSDtGpaUk28IIrjKA598t_1BSIgQRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046996951</pqid></control><display><type>article</type><title>Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation</title><source>Free E- Journals</source><creator>Zhai, Huiyu ; Chen, Mo ; Yang, Xingxing ; Kang, Gusheng</creator><creatorcontrib>Zhai, Huiyu ; Chen, Mo ; Yang, Xingxing ; Kang, Gusheng</creatorcontrib><description>The NIR-to-RGB spectral domain translation is a formidable task due to the inherent spectral mapping ambiguities within NIR inputs and RGB outputs. Thus, existing methods fail to reconcile the tension between maintaining texture detail fidelity and achieving diverse color variations. In this paper, we propose a Multi-scale HSV Color Feature Embedding Network (MCFNet) that decomposes the mapping process into three sub-tasks, including NIR texture maintenance, coarse geometry reconstruction, and RGB color prediction. Thus, we propose three key modules for each corresponding sub-task: the Texture Preserving Block (TPB), the HSV Color Feature Embedding Module (HSV-CFEM), and the Geometry Reconstruction Module (GRM). These modules contribute to our MCFNet methodically tackling spectral translation through a series of escalating resolutions, progressively enriching images with color and texture fidelity in a scale-coherent fashion. The proposed MCFNet demonstrates substantial performance gains over the NIR image colorization task. Code is released at: https://github.com/AlexYangxx/MCFNet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Color ; Embedding ; Mapping ; Modules ; Reconstruction ; Texture</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhai, Huiyu</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Yang, Xingxing</creatorcontrib><creatorcontrib>Kang, Gusheng</creatorcontrib><title>Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation</title><title>arXiv.org</title><description>The NIR-to-RGB spectral domain translation is a formidable task due to the inherent spectral mapping ambiguities within NIR inputs and RGB outputs. Thus, existing methods fail to reconcile the tension between maintaining texture detail fidelity and achieving diverse color variations. In this paper, we propose a Multi-scale HSV Color Feature Embedding Network (MCFNet) that decomposes the mapping process into three sub-tasks, including NIR texture maintenance, coarse geometry reconstruction, and RGB color prediction. Thus, we propose three key modules for each corresponding sub-task: the Texture Preserving Block (TPB), the HSV Color Feature Embedding Module (HSV-CFEM), and the Geometry Reconstruction Module (GRM). These modules contribute to our MCFNet methodically tackling spectral translation through a series of escalating resolutions, progressively enriching images with color and texture fidelity in a scale-coherent fashion. The proposed MCFNet demonstrates substantial performance gains over the NIR image colorization task. Code is released at: https://github.com/AlexYangxx/MCFNet.</description><subject>Accuracy</subject><subject>Color</subject><subject>Embedding</subject><subject>Mapping</subject><subject>Modules</subject><subject>Reconstruction</subject><subject>Texture</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik0LgjAAQEcQJOV_GHQe6KaW10SzQx1Ugk6ydNpkOtvHoX-fh35ApwfvvRVwMCE-OgYYb4Cr9eB5Ho4OOAyJAx5XKwxHuqGCwby8w0QKqWDGqLGKwXR8srblUw-7xea8f6GOt0xw84G3S4GMRMX5BMuZNUbZEVaKTlpQw-W0A-uOCs3cH7dgn6VVkqNZybdl2tSDtGpaUk28IIrjKA598t_1BSIgQRI</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Zhai, Huiyu</creator><creator>Chen, Mo</creator><creator>Yang, Xingxing</creator><creator>Kang, Gusheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240425</creationdate><title>Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation</title><author>Zhai, Huiyu ; Chen, Mo ; Yang, Xingxing ; Kang, Gusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30469969513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Color</topic><topic>Embedding</topic><topic>Mapping</topic><topic>Modules</topic><topic>Reconstruction</topic><topic>Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Huiyu</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Yang, Xingxing</creatorcontrib><creatorcontrib>Kang, Gusheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Huiyu</au><au>Chen, Mo</au><au>Yang, Xingxing</au><au>Kang, Gusheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation</atitle><jtitle>arXiv.org</jtitle><date>2024-04-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The NIR-to-RGB spectral domain translation is a formidable task due to the inherent spectral mapping ambiguities within NIR inputs and RGB outputs. Thus, existing methods fail to reconcile the tension between maintaining texture detail fidelity and achieving diverse color variations. In this paper, we propose a Multi-scale HSV Color Feature Embedding Network (MCFNet) that decomposes the mapping process into three sub-tasks, including NIR texture maintenance, coarse geometry reconstruction, and RGB color prediction. Thus, we propose three key modules for each corresponding sub-task: the Texture Preserving Block (TPB), the HSV Color Feature Embedding Module (HSV-CFEM), and the Geometry Reconstruction Module (GRM). These modules contribute to our MCFNet methodically tackling spectral translation through a series of escalating resolutions, progressively enriching images with color and texture fidelity in a scale-coherent fashion. The proposed MCFNet demonstrates substantial performance gains over the NIR image colorization task. Code is released at: https://github.com/AlexYangxx/MCFNet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3046996951 |
source | Free E- Journals |
subjects | Accuracy Color Embedding Mapping Modules Reconstruction Texture |
title | Multi-scale HSV Color Feature Embedding for High-fidelity NIR-to-RGB Spectrum Translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-scale%20HSV%20Color%20Feature%20Embedding%20for%20High-fidelity%20NIR-to-RGB%20Spectrum%20Translation&rft.jtitle=arXiv.org&rft.au=Zhai,%20Huiyu&rft.date=2024-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3046996951%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046996951&rft_id=info:pmid/&rfr_iscdi=true |