Double Robust Variance Estimation with Parametric Working Models

Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Shook-Sa, Bonnie E, Zivich, Paul N, Lee, Chanhwa, Xue, Keyi, Ross, Rachael K, Edwards, Jessie K, Stringer, Jeffrey S A, Cole, Stephen R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shook-Sa, Bonnie E
Zivich, Paul N
Lee, Chanhwa
Xue, Keyi
Ross, Rachael K
Edwards, Jessie K
Stringer, Jeffrey S A
Cole, Stephen R
description Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (i.e., outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only one working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3046996947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046996947</sourcerecordid><originalsourceid>FETCH-proquest_journals_30469969473</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLsSkF7sJXnARRETHktaoqW2O5iT4-jr4AE7_8P0DFgkpZ8k8FWLEYqKWcy7yQmSZjNhihaHuNBywDuThpJxRttGwJm965Q1aeBt_h71yqtfemQbO6B7G3mCHF93RhA2vqiMd_zpm0836uNwmT4evoMlXLQZnv1RJnuZlmZdpIf-7PkJdOUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046996947</pqid></control><display><type>article</type><title>Double Robust Variance Estimation with Parametric Working Models</title><source>Free E- Journals</source><creator>Shook-Sa, Bonnie E ; Zivich, Paul N ; Lee, Chanhwa ; Xue, Keyi ; Ross, Rachael K ; Edwards, Jessie K ; Stringer, Jeffrey S A ; Cole, Stephen R</creator><creatorcontrib>Shook-Sa, Bonnie E ; Zivich, Paul N ; Lee, Chanhwa ; Xue, Keyi ; Ross, Rachael K ; Edwards, Jessie K ; Stringer, Jeffrey S A ; Cole, Stephen R</creatorcontrib><description>Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (i.e., outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only one working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anemia ; Birth weight ; Estimates ; Estimators ; Influence functions ; Robustness</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shook-Sa, Bonnie E</creatorcontrib><creatorcontrib>Zivich, Paul N</creatorcontrib><creatorcontrib>Lee, Chanhwa</creatorcontrib><creatorcontrib>Xue, Keyi</creatorcontrib><creatorcontrib>Ross, Rachael K</creatorcontrib><creatorcontrib>Edwards, Jessie K</creatorcontrib><creatorcontrib>Stringer, Jeffrey S A</creatorcontrib><creatorcontrib>Cole, Stephen R</creatorcontrib><title>Double Robust Variance Estimation with Parametric Working Models</title><title>arXiv.org</title><description>Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (i.e., outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only one working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.</description><subject>Anemia</subject><subject>Birth weight</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Influence functions</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLsSkF7sJXnARRETHktaoqW2O5iT4-jr4AE7_8P0DFgkpZ8k8FWLEYqKWcy7yQmSZjNhihaHuNBywDuThpJxRttGwJm965Q1aeBt_h71yqtfemQbO6B7G3mCHF93RhA2vqiMd_zpm0836uNwmT4evoMlXLQZnv1RJnuZlmZdpIf-7PkJdOUA</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Shook-Sa, Bonnie E</creator><creator>Zivich, Paul N</creator><creator>Lee, Chanhwa</creator><creator>Xue, Keyi</creator><creator>Ross, Rachael K</creator><creator>Edwards, Jessie K</creator><creator>Stringer, Jeffrey S A</creator><creator>Cole, Stephen R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>Double Robust Variance Estimation with Parametric Working Models</title><author>Shook-Sa, Bonnie E ; Zivich, Paul N ; Lee, Chanhwa ; Xue, Keyi ; Ross, Rachael K ; Edwards, Jessie K ; Stringer, Jeffrey S A ; Cole, Stephen R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30469969473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anemia</topic><topic>Birth weight</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Influence functions</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Shook-Sa, Bonnie E</creatorcontrib><creatorcontrib>Zivich, Paul N</creatorcontrib><creatorcontrib>Lee, Chanhwa</creatorcontrib><creatorcontrib>Xue, Keyi</creatorcontrib><creatorcontrib>Ross, Rachael K</creatorcontrib><creatorcontrib>Edwards, Jessie K</creatorcontrib><creatorcontrib>Stringer, Jeffrey S A</creatorcontrib><creatorcontrib>Cole, Stephen R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shook-Sa, Bonnie E</au><au>Zivich, Paul N</au><au>Lee, Chanhwa</au><au>Xue, Keyi</au><au>Ross, Rachael K</au><au>Edwards, Jessie K</au><au>Stringer, Jeffrey S A</au><au>Cole, Stephen R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Double Robust Variance Estimation with Parametric Working Models</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Doubly robust estimators have gained popularity in the field of causal inference due to their ability to provide consistent point estimates when either an outcome or exposure model is correctly specified. However, for nonrandomized exposures the influence function based variance estimator frequently used with doubly robust estimators of the average causal effect is only consistent when both working models (i.e., outcome and exposure models) are correctly specified. Here, the empirical sandwich variance estimator and the nonparametric bootstrap are demonstrated to be doubly robust variance estimators. That is, they are expected to provide valid estimates of the variance leading to nominal confidence interval coverage when only one working model is correctly specified. Simulation studies illustrate the properties of the influence function based, empirical sandwich, and nonparametric bootstrap variance estimators in the setting where parametric working models are assumed. Estimators are applied to data from the Improving Pregnancy Outcomes with Progesterone (IPOP) study to estimate the effect of maternal anemia on birth weight among women with HIV.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3046996947
source Free E- Journals
subjects Anemia
Birth weight
Estimates
Estimators
Influence functions
Robustness
title Double Robust Variance Estimation with Parametric Working Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Double%20Robust%20Variance%20Estimation%20with%20Parametric%20Working%20Models&rft.jtitle=arXiv.org&rft.au=Shook-Sa,%20Bonnie%20E&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3046996947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046996947&rft_id=info:pmid/&rfr_iscdi=true