MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction

Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2024-04, Vol.30 (4), p.469-480
Hauptverfasser: Karim, Rasidul, Zahedi, Mehboob, De, Debashis, Das, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 4
container_start_page 469
container_title Microsystem technologies : sensors, actuators, systems integration
container_volume 30
creator Karim, Rasidul
Zahedi, Mehboob
De, Debashis
Das, Abhishek
description Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.
doi_str_mv 10.1007/s00542-023-05578-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046731359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046004492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwAkyWmA2-JjYbqiigFrHAbBLnGKW0SbBTVbxNn6VPhkuQ2GA5Z_lv-hA6Z_SSUZpfRUqV5IRyQahSuSb6AI2YFJwwrfQhGlEjM5LTPDtGJzEuaDIZLUbo9XE2nV7jVV2Rrq2bHs_ICoom4rKIUGG3XMceQt284brBmzrAEmLEEZrYBtxAv2nDO_Zt2G3TgdhjnzS7bRegql1ft80pOvLFMsLZzx-jl-nt8-SezJ_uHiY3c-K40T0pKyVLlQkGsiypYZlJAyvjS-9MxriHSkrDnc-d0Zp56VjGAbhyzIP0XIgxuhhyu9B-rNMSu2jXoUmVVlCZ5YIJZf5TUbpvSSo-qFxoYwzgbRfqVRE-LaN2z9sOvG3ibb95W51MYjDFbs8Lwm_0H64vUc2EZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046004492</pqid></control><display><type>article</type><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</creator><creatorcontrib>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</creatorcontrib><description>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-023-05578-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Classification ; Cluster analysis ; Clustering ; Datasets ; Drought ; Electronics and Microelectronics ; Engineering ; Entropy ; Forest &amp; brush fires ; Forest fire detection ; Forest fires ; Humidity ; Instrumentation ; Machine learning ; Mechanical Engineering ; Moisture content ; Nanotechnology ; Nodes ; Power consumption ; Sensors ; Technical Paper ; Vector quantization ; Wireless sensor networks</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2024-04, Vol.30 (4), p.469-480</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</cites><orcidid>0000-0002-5546-6188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-023-05578-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00542-023-05578-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karim, Rasidul</creatorcontrib><creatorcontrib>Zahedi, Mehboob</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Drought</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Forest &amp; brush fires</subject><subject>Forest fire detection</subject><subject>Forest fires</subject><subject>Humidity</subject><subject>Instrumentation</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Moisture content</subject><subject>Nanotechnology</subject><subject>Nodes</subject><subject>Power consumption</subject><subject>Sensors</subject><subject>Technical Paper</subject><subject>Vector quantization</subject><subject>Wireless sensor networks</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwAkyWmA2-JjYbqiigFrHAbBLnGKW0SbBTVbxNn6VPhkuQ2GA5Z_lv-hA6Z_SSUZpfRUqV5IRyQahSuSb6AI2YFJwwrfQhGlEjM5LTPDtGJzEuaDIZLUbo9XE2nV7jVV2Rrq2bHs_ICoom4rKIUGG3XMceQt284brBmzrAEmLEEZrYBtxAv2nDO_Zt2G3TgdhjnzS7bRegql1ft80pOvLFMsLZzx-jl-nt8-SezJ_uHiY3c-K40T0pKyVLlQkGsiypYZlJAyvjS-9MxriHSkrDnc-d0Zp56VjGAbhyzIP0XIgxuhhyu9B-rNMSu2jXoUmVVlCZ5YIJZf5TUbpvSSo-qFxoYwzgbRfqVRE-LaN2z9sOvG3ibb95W51MYjDFbs8Lwm_0H64vUc2EZA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Karim, Rasidul</creator><creator>Zahedi, Mehboob</creator><creator>De, Debashis</creator><creator>Das, Abhishek</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5546-6188</orcidid></search><sort><creationdate>20240401</creationdate><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><author>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Drought</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Forest &amp; brush fires</topic><topic>Forest fire detection</topic><topic>Forest fires</topic><topic>Humidity</topic><topic>Instrumentation</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Moisture content</topic><topic>Nanotechnology</topic><topic>Nodes</topic><topic>Power consumption</topic><topic>Sensors</topic><topic>Technical Paper</topic><topic>Vector quantization</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Rasidul</creatorcontrib><creatorcontrib>Zahedi, Mehboob</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><collection>CrossRef</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Rasidul</au><au>Zahedi, Mehboob</au><au>De, Debashis</au><au>Das, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-023-05578-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5546-6188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0946-7076
ispartof Microsystem technologies : sensors, actuators, systems integration, 2024-04, Vol.30 (4), p.469-480
issn 0946-7076
1432-1858
language eng
recordid cdi_proquest_journals_3046731359
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Classification
Cluster analysis
Clustering
Datasets
Drought
Electronics and Microelectronics
Engineering
Entropy
Forest & brush fires
Forest fire detection
Forest fires
Humidity
Instrumentation
Machine learning
Mechanical Engineering
Moisture content
Nanotechnology
Nodes
Power consumption
Sensors
Technical Paper
Vector quantization
Wireless sensor networks
title MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MKFF:%20mid-point%20K-means%20based%20clustering%20in%20wireless%20sensor%20network%20for%C2%A0forest%20fire%C2%A0prediction&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Karim,%20Rasidul&rft.date=2024-04-01&rft.volume=30&rft.issue=4&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-023-05578-8&rft_dat=%3Cproquest_cross%3E3046004492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046004492&rft_id=info:pmid/&rfr_iscdi=true