MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction
Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gai...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2024-04, Vol.30 (4), p.469-480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 4 |
container_start_page | 469 |
container_title | Microsystem technologies : sensors, actuators, systems integration |
container_volume | 30 |
creator | Karim, Rasidul Zahedi, Mehboob De, Debashis Das, Abhishek |
description | Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency. |
doi_str_mv | 10.1007/s00542-023-05578-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046731359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046004492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwAkyWmA2-JjYbqiigFrHAbBLnGKW0SbBTVbxNn6VPhkuQ2GA5Z_lv-hA6Z_SSUZpfRUqV5IRyQahSuSb6AI2YFJwwrfQhGlEjM5LTPDtGJzEuaDIZLUbo9XE2nV7jVV2Rrq2bHs_ICoom4rKIUGG3XMceQt284brBmzrAEmLEEZrYBtxAv2nDO_Zt2G3TgdhjnzS7bRegql1ft80pOvLFMsLZzx-jl-nt8-SezJ_uHiY3c-K40T0pKyVLlQkGsiypYZlJAyvjS-9MxriHSkrDnc-d0Zp56VjGAbhyzIP0XIgxuhhyu9B-rNMSu2jXoUmVVlCZ5YIJZf5TUbpvSSo-qFxoYwzgbRfqVRE-LaN2z9sOvG3ibb95W51MYjDFbs8Lwm_0H64vUc2EZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046004492</pqid></control><display><type>article</type><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</creator><creatorcontrib>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</creatorcontrib><description>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-023-05578-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Classification ; Cluster analysis ; Clustering ; Datasets ; Drought ; Electronics and Microelectronics ; Engineering ; Entropy ; Forest & brush fires ; Forest fire detection ; Forest fires ; Humidity ; Instrumentation ; Machine learning ; Mechanical Engineering ; Moisture content ; Nanotechnology ; Nodes ; Power consumption ; Sensors ; Technical Paper ; Vector quantization ; Wireless sensor networks</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2024-04, Vol.30 (4), p.469-480</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</cites><orcidid>0000-0002-5546-6188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-023-05578-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00542-023-05578-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karim, Rasidul</creatorcontrib><creatorcontrib>Zahedi, Mehboob</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><description>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Drought</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Forest & brush fires</subject><subject>Forest fire detection</subject><subject>Forest fires</subject><subject>Humidity</subject><subject>Instrumentation</subject><subject>Machine learning</subject><subject>Mechanical Engineering</subject><subject>Moisture content</subject><subject>Nanotechnology</subject><subject>Nodes</subject><subject>Power consumption</subject><subject>Sensors</subject><subject>Technical Paper</subject><subject>Vector quantization</subject><subject>Wireless sensor networks</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwAkyWmA2-JjYbqiigFrHAbBLnGKW0SbBTVbxNn6VPhkuQ2GA5Z_lv-hA6Z_SSUZpfRUqV5IRyQahSuSb6AI2YFJwwrfQhGlEjM5LTPDtGJzEuaDIZLUbo9XE2nV7jVV2Rrq2bHs_ICoom4rKIUGG3XMceQt284brBmzrAEmLEEZrYBtxAv2nDO_Zt2G3TgdhjnzS7bRegql1ft80pOvLFMsLZzx-jl-nt8-SezJ_uHiY3c-K40T0pKyVLlQkGsiypYZlJAyvjS-9MxriHSkrDnc-d0Zp56VjGAbhyzIP0XIgxuhhyu9B-rNMSu2jXoUmVVlCZ5YIJZf5TUbpvSSo-qFxoYwzgbRfqVRE-LaN2z9sOvG3ibb95W51MYjDFbs8Lwm_0H64vUc2EZA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Karim, Rasidul</creator><creator>Zahedi, Mehboob</creator><creator>De, Debashis</creator><creator>Das, Abhishek</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5546-6188</orcidid></search><sort><creationdate>20240401</creationdate><title>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</title><author>Karim, Rasidul ; Zahedi, Mehboob ; De, Debashis ; Das, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-bd54b5631e4bb09169079d9fbfc9612fed4492cf7c9881f4c162ee25c1fe4f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Drought</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Forest & brush fires</topic><topic>Forest fire detection</topic><topic>Forest fires</topic><topic>Humidity</topic><topic>Instrumentation</topic><topic>Machine learning</topic><topic>Mechanical Engineering</topic><topic>Moisture content</topic><topic>Nanotechnology</topic><topic>Nodes</topic><topic>Power consumption</topic><topic>Sensors</topic><topic>Technical Paper</topic><topic>Vector quantization</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Rasidul</creatorcontrib><creatorcontrib>Zahedi, Mehboob</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><creatorcontrib>Das, Abhishek</creatorcontrib><collection>CrossRef</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Rasidul</au><au>Zahedi, Mehboob</au><au>De, Debashis</au><au>Das, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>Forest fires, by disrupting the ecological equilibrium and exacerbating global warming, pose a threat to both wildlife and the overall environmental stability. To safeguard our ecosystems, it is imperative to predict and detect forest fires at an early stage. Wireless Sensor Networks (WSNs) have gained popularity due to their cost-effectiveness, low power consumption, and portability in achieving this goal. This research introduces an innovative method based on mid-point K-means clustering to forecast three forest activity zones: high-active (fire-prone), medium-active, and low-active zones. This system excels in identifying high-active zones with remarkable accuracy (98%). The sensor node at the high-active zone’s center continuously transmits data to the Base Station (BS), promptly notifying the relevant authorities of potential forest fires. In contrast, the medium-active zone’s sensor node periodically shares environmental data, while the low-active zone’s node conserves energy by not transmitting data to the BS, thereby enhancing network longevity and energy efficiency.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00542-023-05578-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5546-6188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-7076 |
ispartof | Microsystem technologies : sensors, actuators, systems integration, 2024-04, Vol.30 (4), p.469-480 |
issn | 0946-7076 1432-1858 |
language | eng |
recordid | cdi_proquest_journals_3046731359 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Algorithms Classification Cluster analysis Clustering Datasets Drought Electronics and Microelectronics Engineering Entropy Forest & brush fires Forest fire detection Forest fires Humidity Instrumentation Machine learning Mechanical Engineering Moisture content Nanotechnology Nodes Power consumption Sensors Technical Paper Vector quantization Wireless sensor networks |
title | MKFF: mid-point K-means based clustering in wireless sensor network for forest fire prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MKFF:%20mid-point%20K-means%20based%20clustering%20in%20wireless%20sensor%20network%20for%C2%A0forest%20fire%C2%A0prediction&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Karim,%20Rasidul&rft.date=2024-04-01&rft.volume=30&rft.issue=4&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-023-05578-8&rft_dat=%3Cproquest_cross%3E3046004492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046004492&rft_id=info:pmid/&rfr_iscdi=true |