High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage

The development of low‐cost and high‐performance iron (Fe)‐based anode materials is of great significance for rechargeable aqueous batteries. Herein, a FeS@Fe foam anode with crosslinked nanoflake array structure is fabricated. Being adopted as alkaline anode, FeS@Fe foam delivers enhanced areal cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-04, Vol.14 (16), p.n/a
Hauptverfasser: Wang, Miao, Xing, Yi, Shi, Qinhao, Ge, Yunshuang, Xiang, Menglin, Huang, Zirui, Xuan, Qianyu, Fan, Yuqian, Zhao, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced energy materials
container_volume 14
creator Wang, Miao
Xing, Yi
Shi, Qinhao
Ge, Yunshuang
Xiang, Menglin
Huang, Zirui
Xuan, Qianyu
Fan, Yuqian
Zhao, Yufeng
description The development of low‐cost and high‐performance iron (Fe)‐based anode materials is of great significance for rechargeable aqueous batteries. Herein, a FeS@Fe foam anode with crosslinked nanoflake array structure is fabricated. Being adopted as alkaline anode, FeS@Fe foam delivers enhanced areal capacity of 31.1 mAh cm−2 (at 50 mA cm−2), which is ≈1.5 times that of the‐state‐of‐the‐art literatures. The scaled‐up tests further reveal the higher capacity (800.7 mAh) and current density (1.25 A) with the area of 25 cm2. The FeS@Fe foam anode sustains intact after 270‐day cycles, demonstrating excellent durability. The assembled FeS//NiO single battery provides a superior areal energy density of 300.7 Wh m−2 at 500 W m−2. The reaction mechanism and electrode kinetics are revealed by combining in/ex situ techniques and DFT calculations. Experimental results and in/ex situ characterizations validate that excellent structural stability and high areal capacity are attributed to effective interface regulation and improved energy storage mechanism, respectively. This work pushes the advanced Fe‐based electrode to a superior level among these available alkaline solid‐state batteries. High mass loading FeS@Fe foam anode with hierarchical structure is designed through a facile in situ growth strategy. Benefiting from optimized interface engineering and enhanced reaction mechanism, FeS@Fe foam electrode demonstrates a higher areal capacity, energy density, and faster reaction kinetics.
doi_str_mv 10.1002/aenm.202304060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046370850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046370850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2720-e80705ae220c7b5420f24778c872ef4f7490939dec0e475cf3d32f2dc3bc5b193</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEElXpymyJOeViO3GyEVUtRSowBGbLdS6t2zQuTqIqG4_AM_IkpCoqI7f8N3z_nfR53m0A4wCA3iusdmMKlAGHCC68QRAF3I9iDpfnndFrb1TXG-iHJwEwNvC2c7Nak9ShKslE7ZU2TUdmmD3MkMys2pG0sjmSg2nWZG7QKafXRvdw1rhWN61DUlhH0nKrSlMhyWxp8u_Pr6xRDZJphW7V9ax1aoU33lWhyhpHvzn03mfTt8ncX7w-Pk3Sha-poOBjDAJChZSCFsuQUygoFyLWsaBY8ELwBBKW5KgBuQh1wXJGC5prttThMkjY0Ls73d07-9Fi3ciNbV3Vv5S9nogJiEPoqfGJ0s7WtcNC7p3ZKdfJAOTRqTw6lWenfSE5FQ6mxO4fWqbTl-e_7g8TCnql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046370850</pqid></control><display><type>article</type><title>High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage</title><source>Wiley Online Library Journals</source><creator>Wang, Miao ; Xing, Yi ; Shi, Qinhao ; Ge, Yunshuang ; Xiang, Menglin ; Huang, Zirui ; Xuan, Qianyu ; Fan, Yuqian ; Zhao, Yufeng</creator><creatorcontrib>Wang, Miao ; Xing, Yi ; Shi, Qinhao ; Ge, Yunshuang ; Xiang, Menglin ; Huang, Zirui ; Xuan, Qianyu ; Fan, Yuqian ; Zhao, Yufeng</creatorcontrib><description>The development of low‐cost and high‐performance iron (Fe)‐based anode materials is of great significance for rechargeable aqueous batteries. Herein, a FeS@Fe foam anode with crosslinked nanoflake array structure is fabricated. Being adopted as alkaline anode, FeS@Fe foam delivers enhanced areal capacity of 31.1 mAh cm−2 (at 50 mA cm−2), which is ≈1.5 times that of the‐state‐of‐the‐art literatures. The scaled‐up tests further reveal the higher capacity (800.7 mAh) and current density (1.25 A) with the area of 25 cm2. The FeS@Fe foam anode sustains intact after 270‐day cycles, demonstrating excellent durability. The assembled FeS//NiO single battery provides a superior areal energy density of 300.7 Wh m−2 at 500 W m−2. The reaction mechanism and electrode kinetics are revealed by combining in/ex situ techniques and DFT calculations. Experimental results and in/ex situ characterizations validate that excellent structural stability and high areal capacity are attributed to effective interface regulation and improved energy storage mechanism, respectively. This work pushes the advanced Fe‐based electrode to a superior level among these available alkaline solid‐state batteries. High mass loading FeS@Fe foam anode with hierarchical structure is designed through a facile in situ growth strategy. Benefiting from optimized interface engineering and enhanced reaction mechanism, FeS@Fe foam electrode demonstrates a higher areal capacity, energy density, and faster reaction kinetics.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202304060</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; areal capacity ; Electrode materials ; Electrodes ; Energy storage ; FeS anode ; interface regulation ; Interface stability ; Iron ; Metal foams ; reaction mechanism ; Reaction mechanisms ; Rechargeable batteries ; solid‐state energy storage ; Structural stability</subject><ispartof>Advanced energy materials, 2024-04, Vol.14 (16), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2720-e80705ae220c7b5420f24778c872ef4f7490939dec0e475cf3d32f2dc3bc5b193</cites><orcidid>0000-0003-0899-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202304060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202304060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Shi, Qinhao</creatorcontrib><creatorcontrib>Ge, Yunshuang</creatorcontrib><creatorcontrib>Xiang, Menglin</creatorcontrib><creatorcontrib>Huang, Zirui</creatorcontrib><creatorcontrib>Xuan, Qianyu</creatorcontrib><creatorcontrib>Fan, Yuqian</creatorcontrib><creatorcontrib>Zhao, Yufeng</creatorcontrib><title>High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage</title><title>Advanced energy materials</title><description>The development of low‐cost and high‐performance iron (Fe)‐based anode materials is of great significance for rechargeable aqueous batteries. Herein, a FeS@Fe foam anode with crosslinked nanoflake array structure is fabricated. Being adopted as alkaline anode, FeS@Fe foam delivers enhanced areal capacity of 31.1 mAh cm−2 (at 50 mA cm−2), which is ≈1.5 times that of the‐state‐of‐the‐art literatures. The scaled‐up tests further reveal the higher capacity (800.7 mAh) and current density (1.25 A) with the area of 25 cm2. The FeS@Fe foam anode sustains intact after 270‐day cycles, demonstrating excellent durability. The assembled FeS//NiO single battery provides a superior areal energy density of 300.7 Wh m−2 at 500 W m−2. The reaction mechanism and electrode kinetics are revealed by combining in/ex situ techniques and DFT calculations. Experimental results and in/ex situ characterizations validate that excellent structural stability and high areal capacity are attributed to effective interface regulation and improved energy storage mechanism, respectively. This work pushes the advanced Fe‐based electrode to a superior level among these available alkaline solid‐state batteries. High mass loading FeS@Fe foam anode with hierarchical structure is designed through a facile in situ growth strategy. Benefiting from optimized interface engineering and enhanced reaction mechanism, FeS@Fe foam electrode demonstrates a higher areal capacity, energy density, and faster reaction kinetics.</description><subject>Anodes</subject><subject>areal capacity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>FeS anode</subject><subject>interface regulation</subject><subject>Interface stability</subject><subject>Iron</subject><subject>Metal foams</subject><subject>reaction mechanism</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>solid‐state energy storage</subject><subject>Structural stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEElXpymyJOeViO3GyEVUtRSowBGbLdS6t2zQuTqIqG4_AM_IkpCoqI7f8N3z_nfR53m0A4wCA3iusdmMKlAGHCC68QRAF3I9iDpfnndFrb1TXG-iHJwEwNvC2c7Nak9ShKslE7ZU2TUdmmD3MkMys2pG0sjmSg2nWZG7QKafXRvdw1rhWN61DUlhH0nKrSlMhyWxp8u_Pr6xRDZJphW7V9ax1aoU33lWhyhpHvzn03mfTt8ncX7w-Pk3Sha-poOBjDAJChZSCFsuQUygoFyLWsaBY8ELwBBKW5KgBuQh1wXJGC5prttThMkjY0Ls73d07-9Fi3ciNbV3Vv5S9nogJiEPoqfGJ0s7WtcNC7p3ZKdfJAOTRqTw6lWenfSE5FQ6mxO4fWqbTl-e_7g8TCnql</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Miao</creator><creator>Xing, Yi</creator><creator>Shi, Qinhao</creator><creator>Ge, Yunshuang</creator><creator>Xiang, Menglin</creator><creator>Huang, Zirui</creator><creator>Xuan, Qianyu</creator><creator>Fan, Yuqian</creator><creator>Zhao, Yufeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0899-5367</orcidid></search><sort><creationdate>20240401</creationdate><title>High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage</title><author>Wang, Miao ; Xing, Yi ; Shi, Qinhao ; Ge, Yunshuang ; Xiang, Menglin ; Huang, Zirui ; Xuan, Qianyu ; Fan, Yuqian ; Zhao, Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2720-e80705ae220c7b5420f24778c872ef4f7490939dec0e475cf3d32f2dc3bc5b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>areal capacity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>FeS anode</topic><topic>interface regulation</topic><topic>Interface stability</topic><topic>Iron</topic><topic>Metal foams</topic><topic>reaction mechanism</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>solid‐state energy storage</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Miao</creatorcontrib><creatorcontrib>Xing, Yi</creatorcontrib><creatorcontrib>Shi, Qinhao</creatorcontrib><creatorcontrib>Ge, Yunshuang</creatorcontrib><creatorcontrib>Xiang, Menglin</creatorcontrib><creatorcontrib>Huang, Zirui</creatorcontrib><creatorcontrib>Xuan, Qianyu</creatorcontrib><creatorcontrib>Fan, Yuqian</creatorcontrib><creatorcontrib>Zhao, Yufeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Miao</au><au>Xing, Yi</au><au>Shi, Qinhao</au><au>Ge, Yunshuang</au><au>Xiang, Menglin</au><au>Huang, Zirui</au><au>Xuan, Qianyu</au><au>Fan, Yuqian</au><au>Zhao, Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage</atitle><jtitle>Advanced energy materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The development of low‐cost and high‐performance iron (Fe)‐based anode materials is of great significance for rechargeable aqueous batteries. Herein, a FeS@Fe foam anode with crosslinked nanoflake array structure is fabricated. Being adopted as alkaline anode, FeS@Fe foam delivers enhanced areal capacity of 31.1 mAh cm−2 (at 50 mA cm−2), which is ≈1.5 times that of the‐state‐of‐the‐art literatures. The scaled‐up tests further reveal the higher capacity (800.7 mAh) and current density (1.25 A) with the area of 25 cm2. The FeS@Fe foam anode sustains intact after 270‐day cycles, demonstrating excellent durability. The assembled FeS//NiO single battery provides a superior areal energy density of 300.7 Wh m−2 at 500 W m−2. The reaction mechanism and electrode kinetics are revealed by combining in/ex situ techniques and DFT calculations. Experimental results and in/ex situ characterizations validate that excellent structural stability and high areal capacity are attributed to effective interface regulation and improved energy storage mechanism, respectively. This work pushes the advanced Fe‐based electrode to a superior level among these available alkaline solid‐state batteries. High mass loading FeS@Fe foam anode with hierarchical structure is designed through a facile in situ growth strategy. Benefiting from optimized interface engineering and enhanced reaction mechanism, FeS@Fe foam electrode demonstrates a higher areal capacity, energy density, and faster reaction kinetics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202304060</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0899-5367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-04, Vol.14 (16), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3046370850
source Wiley Online Library Journals
subjects Anodes
areal capacity
Electrode materials
Electrodes
Energy storage
FeS anode
interface regulation
Interface stability
Iron
Metal foams
reaction mechanism
Reaction mechanisms
Rechargeable batteries
solid‐state energy storage
Structural stability
title High Areal Capacity FeS@Fe Foam Anode with Hierarchical Structure for Alkaline Solid‐State Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Areal%20Capacity%20FeS@Fe%20Foam%20Anode%20with%20Hierarchical%20Structure%20for%20Alkaline%20Solid%E2%80%90State%20Energy%20Storage&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Miao&rft.date=2024-04-01&rft.volume=14&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202304060&rft_dat=%3Cproquest_cross%3E3046370850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046370850&rft_id=info:pmid/&rfr_iscdi=true