Predicting Co-movement patterns in mobility data
Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-...
Gespeichert in:
Veröffentlicht in: | GeoInformatica 2024-04, Vol.28 (2), p.221-243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | GeoInformatica |
container_volume | 28 |
creator | Tritsarolis, Andreas Chondrodima, Eva Tampakis, Panagiotis Pikrakis, Aggelos Theodoridis, Yannis |
description | Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of
Online Prediction of Co-movement Patterns
. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework. |
doi_str_mv | 10.1007/s10707-022-00478-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046042763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046042763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZz0mOUtQKBT3oedlkNyWlSeruVtp_72oEb55mBt7nHXgIuWZwywDwLjJAQAqcUwCJJT2ckBlTKChqLk_zLkpJNUN1Ti5i3ACAysSMwGvwrmtSN6yLxUj78dP3fkjFzqbkwxCLbij6se62XToWziZ7Sc5au43-6nfOyfvjw9tiSVcvT8-L-xVtBJOJSrDMe-4cirZsvNOlVa6SWtg2H6JuZcUselSVEtqBKgXnLWCjUNdYWS3m5Gbq3YXxY-9jMptxH4b80giQGiRHLXKKT6kmjDEG35pd6HobjoaB-TZjJjMmmzE_ZswhQ2KCYg4Pax_-qv-hvgB8F2Xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046042763</pqid></control><display><type>article</type><title>Predicting Co-movement patterns in mobility data</title><source>SpringerNature Journals</source><creator>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</creator><creatorcontrib>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</creatorcontrib><description>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of
Online Prediction of Co-movement Patterns
. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-022-00478-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cluster analysis ; Clusters ; Computer Science ; Data analysis ; Data Structures and Information Theory ; Evolution ; Geographical Information Systems/Cartography ; Information Storage and Retrieval ; Local movements ; Mathematical analysis ; Mobility ; Movement ; Multimedia Information Systems ; Predictive analytics ; Similarity measures ; Traffic congestion ; Traffic jams</subject><ispartof>GeoInformatica, 2024-04, Vol.28 (2), p.221-243</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-022-00478-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-022-00478-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tritsarolis, Andreas</creatorcontrib><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Tampakis, Panagiotis</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><title>Predicting Co-movement patterns in mobility data</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of
Online Prediction of Co-movement Patterns
. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</description><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data Structures and Information Theory</subject><subject>Evolution</subject><subject>Geographical Information Systems/Cartography</subject><subject>Information Storage and Retrieval</subject><subject>Local movements</subject><subject>Mathematical analysis</subject><subject>Mobility</subject><subject>Movement</subject><subject>Multimedia Information Systems</subject><subject>Predictive analytics</subject><subject>Similarity measures</subject><subject>Traffic congestion</subject><subject>Traffic jams</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZz0mOUtQKBT3oedlkNyWlSeruVtp_72oEb55mBt7nHXgIuWZwywDwLjJAQAqcUwCJJT2ckBlTKChqLk_zLkpJNUN1Ti5i3ACAysSMwGvwrmtSN6yLxUj78dP3fkjFzqbkwxCLbij6se62XToWziZ7Sc5au43-6nfOyfvjw9tiSVcvT8-L-xVtBJOJSrDMe-4cirZsvNOlVa6SWtg2H6JuZcUselSVEtqBKgXnLWCjUNdYWS3m5Gbq3YXxY-9jMptxH4b80giQGiRHLXKKT6kmjDEG35pd6HobjoaB-TZjJjMmmzE_ZswhQ2KCYg4Pax_-qv-hvgB8F2Xd</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tritsarolis, Andreas</creator><creator>Chondrodima, Eva</creator><creator>Tampakis, Panagiotis</creator><creator>Pikrakis, Aggelos</creator><creator>Theodoridis, Yannis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240401</creationdate><title>Predicting Co-movement patterns in mobility data</title><author>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data Structures and Information Theory</topic><topic>Evolution</topic><topic>Geographical Information Systems/Cartography</topic><topic>Information Storage and Retrieval</topic><topic>Local movements</topic><topic>Mathematical analysis</topic><topic>Mobility</topic><topic>Movement</topic><topic>Multimedia Information Systems</topic><topic>Predictive analytics</topic><topic>Similarity measures</topic><topic>Traffic congestion</topic><topic>Traffic jams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tritsarolis, Andreas</creatorcontrib><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Tampakis, Panagiotis</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tritsarolis, Andreas</au><au>Chondrodima, Eva</au><au>Tampakis, Panagiotis</au><au>Pikrakis, Aggelos</au><au>Theodoridis, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Co-movement patterns in mobility data</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>221</spage><epage>243</epage><pages>221-243</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of
Online Prediction of Co-movement Patterns
. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-022-00478-x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-6175 |
ispartof | GeoInformatica, 2024-04, Vol.28 (2), p.221-243 |
issn | 1384-6175 1573-7624 |
language | eng |
recordid | cdi_proquest_journals_3046042763 |
source | SpringerNature Journals |
subjects | Cluster analysis Clusters Computer Science Data analysis Data Structures and Information Theory Evolution Geographical Information Systems/Cartography Information Storage and Retrieval Local movements Mathematical analysis Mobility Movement Multimedia Information Systems Predictive analytics Similarity measures Traffic congestion Traffic jams |
title | Predicting Co-movement patterns in mobility data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Co-movement%20patterns%20in%20mobility%20data&rft.jtitle=GeoInformatica&rft.au=Tritsarolis,%20Andreas&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=221&rft.epage=243&rft.pages=221-243&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-022-00478-x&rft_dat=%3Cproquest_cross%3E3046042763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046042763&rft_id=info:pmid/&rfr_iscdi=true |