Predicting Co-movement patterns in mobility data

Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GeoInformatica 2024-04, Vol.28 (2), p.221-243
Hauptverfasser: Tritsarolis, Andreas, Chondrodima, Eva, Tampakis, Panagiotis, Pikrakis, Aggelos, Theodoridis, Yannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2
container_start_page 221
container_title GeoInformatica
container_volume 28
creator Tritsarolis, Andreas
Chondrodima, Eva
Tampakis, Panagiotis
Pikrakis, Aggelos
Theodoridis, Yannis
description Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of Online Prediction of Co-movement Patterns . Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.
doi_str_mv 10.1007/s10707-022-00478-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046042763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046042763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZz0mOUtQKBT3oedlkNyWlSeruVtp_72oEb55mBt7nHXgIuWZwywDwLjJAQAqcUwCJJT2ckBlTKChqLk_zLkpJNUN1Ti5i3ACAysSMwGvwrmtSN6yLxUj78dP3fkjFzqbkwxCLbij6se62XToWziZ7Sc5au43-6nfOyfvjw9tiSVcvT8-L-xVtBJOJSrDMe-4cirZsvNOlVa6SWtg2H6JuZcUselSVEtqBKgXnLWCjUNdYWS3m5Gbq3YXxY-9jMptxH4b80giQGiRHLXKKT6kmjDEG35pd6HobjoaB-TZjJjMmmzE_ZswhQ2KCYg4Pax_-qv-hvgB8F2Xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046042763</pqid></control><display><type>article</type><title>Predicting Co-movement patterns in mobility data</title><source>SpringerNature Journals</source><creator>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</creator><creatorcontrib>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</creatorcontrib><description>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of Online Prediction of Co-movement Patterns . Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-022-00478-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cluster analysis ; Clusters ; Computer Science ; Data analysis ; Data Structures and Information Theory ; Evolution ; Geographical Information Systems/Cartography ; Information Storage and Retrieval ; Local movements ; Mathematical analysis ; Mobility ; Movement ; Multimedia Information Systems ; Predictive analytics ; Similarity measures ; Traffic congestion ; Traffic jams</subject><ispartof>GeoInformatica, 2024-04, Vol.28 (2), p.221-243</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-022-00478-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-022-00478-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tritsarolis, Andreas</creatorcontrib><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Tampakis, Panagiotis</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><title>Predicting Co-movement patterns in mobility data</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of Online Prediction of Co-movement Patterns . Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</description><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data Structures and Information Theory</subject><subject>Evolution</subject><subject>Geographical Information Systems/Cartography</subject><subject>Information Storage and Retrieval</subject><subject>Local movements</subject><subject>Mathematical analysis</subject><subject>Mobility</subject><subject>Movement</subject><subject>Multimedia Information Systems</subject><subject>Predictive analytics</subject><subject>Similarity measures</subject><subject>Traffic congestion</subject><subject>Traffic jams</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA59XZz0mOUtQKBT3oedlkNyWlSeruVtp_72oEb55mBt7nHXgIuWZwywDwLjJAQAqcUwCJJT2ckBlTKChqLk_zLkpJNUN1Ti5i3ACAysSMwGvwrmtSN6yLxUj78dP3fkjFzqbkwxCLbij6se62XToWziZ7Sc5au43-6nfOyfvjw9tiSVcvT8-L-xVtBJOJSrDMe-4cirZsvNOlVa6SWtg2H6JuZcUselSVEtqBKgXnLWCjUNdYWS3m5Gbq3YXxY-9jMptxH4b80giQGiRHLXKKT6kmjDEG35pd6HobjoaB-TZjJjMmmzE_ZswhQ2KCYg4Pax_-qv-hvgB8F2Xd</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tritsarolis, Andreas</creator><creator>Chondrodima, Eva</creator><creator>Tampakis, Panagiotis</creator><creator>Pikrakis, Aggelos</creator><creator>Theodoridis, Yannis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240401</creationdate><title>Predicting Co-movement patterns in mobility data</title><author>Tritsarolis, Andreas ; Chondrodima, Eva ; Tampakis, Panagiotis ; Pikrakis, Aggelos ; Theodoridis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-40a1ee2dd73f8ced68a5d9463afed63bf491a7e759536d058322f07c576b79a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data Structures and Information Theory</topic><topic>Evolution</topic><topic>Geographical Information Systems/Cartography</topic><topic>Information Storage and Retrieval</topic><topic>Local movements</topic><topic>Mathematical analysis</topic><topic>Mobility</topic><topic>Movement</topic><topic>Multimedia Information Systems</topic><topic>Predictive analytics</topic><topic>Similarity measures</topic><topic>Traffic congestion</topic><topic>Traffic jams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tritsarolis, Andreas</creatorcontrib><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Tampakis, Panagiotis</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tritsarolis, Andreas</au><au>Chondrodima, Eva</au><au>Tampakis, Panagiotis</au><au>Pikrakis, Aggelos</au><au>Theodoridis, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Co-movement patterns in mobility data</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>221</spage><epage>243</epage><pages>221-243</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Predictive analytics over mobility data is of great importance since it can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example is anticipated location prediction, where the goal is to predict the future location of a moving object, given a look-ahead time. What is even more challenging is to be able to accurately predict collective behavioural patterns of movement, such as co-movement patterns as well as their course over time. In this paper, we address the problem of Online Prediction of Co-movement Patterns . Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates the comparison between the predicted clusters and the actual ones. Finally, we calculate the clusters’ evolution through time (survive, split, etc.) and compare the cluster evolution predicted by our framework with the actual one. Our experimental study uses two real-world mobility datasets from the maritime and urban domain, respectively, and demonstrates the effectiveness of the proposed framework.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-022-00478-x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1384-6175
ispartof GeoInformatica, 2024-04, Vol.28 (2), p.221-243
issn 1384-6175
1573-7624
language eng
recordid cdi_proquest_journals_3046042763
source SpringerNature Journals
subjects Cluster analysis
Clusters
Computer Science
Data analysis
Data Structures and Information Theory
Evolution
Geographical Information Systems/Cartography
Information Storage and Retrieval
Local movements
Mathematical analysis
Mobility
Movement
Multimedia Information Systems
Predictive analytics
Similarity measures
Traffic congestion
Traffic jams
title Predicting Co-movement patterns in mobility data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Co-movement%20patterns%20in%20mobility%20data&rft.jtitle=GeoInformatica&rft.au=Tritsarolis,%20Andreas&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=221&rft.epage=243&rft.pages=221-243&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-022-00478-x&rft_dat=%3Cproquest_cross%3E3046042763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046042763&rft_id=info:pmid/&rfr_iscdi=true