Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling
Exactly converging the metal powder flux at a given substrate position is of great importance for additively manufacturing high-quality metallic products, and it essentially depends on the geometric structure and thermal dynamics of powder streams. In this study, we developed a 3D numerical model to...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-05, Vol.132 (5-6), p.2923-2939 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2939 |
---|---|
container_issue | 5-6 |
container_start_page | 2923 |
container_title | International journal of advanced manufacturing technology |
container_volume | 132 |
creator | Qu, Xiaoguang Chai, Ze Liu, Tongtong Chen, Huabin Chen, Xiaoqi |
description | Exactly converging the metal powder flux at a given substrate position is of great importance for additively manufacturing high-quality metallic products, and it essentially depends on the geometric structure and thermal dynamics of powder streams. In this study, we developed a 3D numerical model to elucidate the interactions between powder, gas, and laser beam in a coaxial nozzle during laser directed energy deposition (DED). The numerical simulation indicates that the waist-shaped powder stream converges approximately 11.2 mm below the nozzle outlet, where the minimum nominal radius is achieved. Within the laser irradiation area, the powder particle temperature increases dramatically and reaches the maximum average value at approximately 20 mm away from the nozzle outlet. Furthermore, optimal powder stream convergence and high thermal efficiency can be achieved when the powder stream driven by low inner gas flow rate converges 4 mm below the laser beam focal plane. The results of high-speed and infrared imaging analysis demonstrate that the proposed model has good predictability for the mean particle velocity and temperature, with average
R
2
of 0.91 and 0.96, respectively. This study provides an effective approach to achieve desired metal-powder stream convergence and high thermal efficiency for DED powder feeding. |
doi_str_mv | 10.1007/s00170-024-13482-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3045982894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045982894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fc53193ee616b83b6258249e5ce10fb0c1dadc1dace3580f5eadc3a68e0ed3c33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kaTOElW8pEqwgLXl2uPUVRIHOxHqf_DBuA2iOzZjzfjcO_ZF6JqSW0rI4i4SQhckIyzPKM8Fy9gJmtGc84wTWpyiGWGlyPiiFOfoIsZtwktaihn6fvNfBgKOQwDV4mEDoVUNNrtOtU5H7DpsXAA9gMHQQah32EDvoxuc77D1AW9cvcGqrgPU6jBUnfnzAWuddtDpHR6j62qsfduPwwFM17YZnTkua72BJlGX6MyqJsLV7zlHH48P78vnbPX69LK8X2WaLciQWV1wWnGA9JW14OuSFYLlFRQaKLFroqlRZl808EIQW0BquSoFEDBccz5HN5NvH_znCHGQWz-G9LAoOcmLSjBR5YliE6WDjzGAlX1wrQo7SYncpy-n9GVKXx7SlyyJ-CSKCe5qCEfrf1Q_mG-Mjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045982894</pqid></control><display><type>article</type><title>Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling</title><source>SpringerLink Journals</source><creator>Qu, Xiaoguang ; Chai, Ze ; Liu, Tongtong ; Chen, Huabin ; Chen, Xiaoqi</creator><creatorcontrib>Qu, Xiaoguang ; Chai, Ze ; Liu, Tongtong ; Chen, Huabin ; Chen, Xiaoqi</creatorcontrib><description>Exactly converging the metal powder flux at a given substrate position is of great importance for additively manufacturing high-quality metallic products, and it essentially depends on the geometric structure and thermal dynamics of powder streams. In this study, we developed a 3D numerical model to elucidate the interactions between powder, gas, and laser beam in a coaxial nozzle during laser directed energy deposition (DED). The numerical simulation indicates that the waist-shaped powder stream converges approximately 11.2 mm below the nozzle outlet, where the minimum nominal radius is achieved. Within the laser irradiation area, the powder particle temperature increases dramatically and reaches the maximum average value at approximately 20 mm away from the nozzle outlet. Furthermore, optimal powder stream convergence and high thermal efficiency can be achieved when the powder stream driven by low inner gas flow rate converges 4 mm below the laser beam focal plane. The results of high-speed and infrared imaging analysis demonstrate that the proposed model has good predictability for the mean particle velocity and temperature, with average
R
2
of 0.91 and 0.96, respectively. This study provides an effective approach to achieve desired metal-powder stream convergence and high thermal efficiency for DED powder feeding.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13482-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Coaxial nozzles ; Computational fluid dynamics ; Computer-Aided Engineering (CAD ; Convergence ; Deposition ; Dynamic structural analysis ; Efficiency ; Engineering ; Focal plane ; Gas flow ; Industrial and Production Engineering ; Infrared analysis ; Infrared imaging ; Laser beams ; Lasers ; Mathematical models ; Mechanical Engineering ; Media Management ; Metal powders ; Numerical models ; Original Article ; Substrates ; Thermodynamic efficiency ; Three dimensional models</subject><ispartof>International journal of advanced manufacturing technology, 2024-05, Vol.132 (5-6), p.2923-2939</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fc53193ee616b83b6258249e5ce10fb0c1dadc1dace3580f5eadc3a68e0ed3c33</cites><orcidid>0000-0003-3227-4607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-13482-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-13482-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qu, Xiaoguang</creatorcontrib><creatorcontrib>Chai, Ze</creatorcontrib><creatorcontrib>Liu, Tongtong</creatorcontrib><creatorcontrib>Chen, Huabin</creatorcontrib><creatorcontrib>Chen, Xiaoqi</creatorcontrib><title>Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Exactly converging the metal powder flux at a given substrate position is of great importance for additively manufacturing high-quality metallic products, and it essentially depends on the geometric structure and thermal dynamics of powder streams. In this study, we developed a 3D numerical model to elucidate the interactions between powder, gas, and laser beam in a coaxial nozzle during laser directed energy deposition (DED). The numerical simulation indicates that the waist-shaped powder stream converges approximately 11.2 mm below the nozzle outlet, where the minimum nominal radius is achieved. Within the laser irradiation area, the powder particle temperature increases dramatically and reaches the maximum average value at approximately 20 mm away from the nozzle outlet. Furthermore, optimal powder stream convergence and high thermal efficiency can be achieved when the powder stream driven by low inner gas flow rate converges 4 mm below the laser beam focal plane. The results of high-speed and infrared imaging analysis demonstrate that the proposed model has good predictability for the mean particle velocity and temperature, with average
R
2
of 0.91 and 0.96, respectively. This study provides an effective approach to achieve desired metal-powder stream convergence and high thermal efficiency for DED powder feeding.</description><subject>CAE) and Design</subject><subject>Coaxial nozzles</subject><subject>Computational fluid dynamics</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Convergence</subject><subject>Deposition</subject><subject>Dynamic structural analysis</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Focal plane</subject><subject>Gas flow</subject><subject>Industrial and Production Engineering</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Metal powders</subject><subject>Numerical models</subject><subject>Original Article</subject><subject>Substrates</subject><subject>Thermodynamic efficiency</subject><subject>Three dimensional models</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74kaTOElW8pEqwgLXl2uPUVRIHOxHqf_DBuA2iOzZjzfjcO_ZF6JqSW0rI4i4SQhckIyzPKM8Fy9gJmtGc84wTWpyiGWGlyPiiFOfoIsZtwktaihn6fvNfBgKOQwDV4mEDoVUNNrtOtU5H7DpsXAA9gMHQQah32EDvoxuc77D1AW9cvcGqrgPU6jBUnfnzAWuddtDpHR6j62qsfduPwwFM17YZnTkua72BJlGX6MyqJsLV7zlHH48P78vnbPX69LK8X2WaLciQWV1wWnGA9JW14OuSFYLlFRQaKLFroqlRZl808EIQW0BquSoFEDBccz5HN5NvH_znCHGQWz-G9LAoOcmLSjBR5YliE6WDjzGAlX1wrQo7SYncpy-n9GVKXx7SlyyJ-CSKCe5qCEfrf1Q_mG-Mjw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Qu, Xiaoguang</creator><creator>Chai, Ze</creator><creator>Liu, Tongtong</creator><creator>Chen, Huabin</creator><creator>Chen, Xiaoqi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3227-4607</orcidid></search><sort><creationdate>20240501</creationdate><title>Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling</title><author>Qu, Xiaoguang ; Chai, Ze ; Liu, Tongtong ; Chen, Huabin ; Chen, Xiaoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fc53193ee616b83b6258249e5ce10fb0c1dadc1dace3580f5eadc3a68e0ed3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAE) and Design</topic><topic>Coaxial nozzles</topic><topic>Computational fluid dynamics</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Convergence</topic><topic>Deposition</topic><topic>Dynamic structural analysis</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Focal plane</topic><topic>Gas flow</topic><topic>Industrial and Production Engineering</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Metal powders</topic><topic>Numerical models</topic><topic>Original Article</topic><topic>Substrates</topic><topic>Thermodynamic efficiency</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Xiaoguang</creatorcontrib><creatorcontrib>Chai, Ze</creatorcontrib><creatorcontrib>Liu, Tongtong</creatorcontrib><creatorcontrib>Chen, Huabin</creatorcontrib><creatorcontrib>Chen, Xiaoqi</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Xiaoguang</au><au>Chai, Ze</au><au>Liu, Tongtong</au><au>Chen, Huabin</au><au>Chen, Xiaoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>132</volume><issue>5-6</issue><spage>2923</spage><epage>2939</epage><pages>2923-2939</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Exactly converging the metal powder flux at a given substrate position is of great importance for additively manufacturing high-quality metallic products, and it essentially depends on the geometric structure and thermal dynamics of powder streams. In this study, we developed a 3D numerical model to elucidate the interactions between powder, gas, and laser beam in a coaxial nozzle during laser directed energy deposition (DED). The numerical simulation indicates that the waist-shaped powder stream converges approximately 11.2 mm below the nozzle outlet, where the minimum nominal radius is achieved. Within the laser irradiation area, the powder particle temperature increases dramatically and reaches the maximum average value at approximately 20 mm away from the nozzle outlet. Furthermore, optimal powder stream convergence and high thermal efficiency can be achieved when the powder stream driven by low inner gas flow rate converges 4 mm below the laser beam focal plane. The results of high-speed and infrared imaging analysis demonstrate that the proposed model has good predictability for the mean particle velocity and temperature, with average
R
2
of 0.91 and 0.96, respectively. This study provides an effective approach to achieve desired metal-powder stream convergence and high thermal efficiency for DED powder feeding.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13482-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3227-4607</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-05, Vol.132 (5-6), p.2923-2939 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3045982894 |
source | SpringerLink Journals |
subjects | CAE) and Design Coaxial nozzles Computational fluid dynamics Computer-Aided Engineering (CAD Convergence Deposition Dynamic structural analysis Efficiency Engineering Focal plane Gas flow Industrial and Production Engineering Infrared analysis Infrared imaging Laser beams Lasers Mathematical models Mechanical Engineering Media Management Metal powders Numerical models Original Article Substrates Thermodynamic efficiency Three dimensional models |
title | Powder stream thermal dynamics in directed energy deposition for high aggregation and thermal efficiency using computational fluid dynamics modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Powder%20stream%20thermal%20dynamics%20in%20directed%20energy%20deposition%20for%20high%20aggregation%20and%20thermal%20efficiency%20using%20computational%20fluid%20dynamics%20modeling&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Qu,%20Xiaoguang&rft.date=2024-05-01&rft.volume=132&rft.issue=5-6&rft.spage=2923&rft.epage=2939&rft.pages=2923-2939&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13482-2&rft_dat=%3Cproquest_cross%3E3045982894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3045982894&rft_id=info:pmid/&rfr_iscdi=true |