Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning

Obtaining accurate discontinuity information on a tunnel is essential for tunnel stability assessment, and usually requires geological surveys on the tunnel surface. However, traditional manual measurement methods are time-consuming, labor-intensive, and provide limited data, particularly when deali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2024-06, Vol.42 (4), p.2577-2599
Hauptverfasser: Chen, Na, Xiao, Ao, Li, Lihua, Xiao, Henglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2599
container_issue 4
container_start_page 2577
container_title Geotechnical and geological engineering
container_volume 42
creator Chen, Na
Xiao, Ao
Li, Lihua
Xiao, Henglin
description Obtaining accurate discontinuity information on a tunnel is essential for tunnel stability assessment, and usually requires geological surveys on the tunnel surface. However, traditional manual measurement methods are time-consuming, labor-intensive, and provide limited data, particularly when dealing with complex tunnel rock masses. To address this problem, this paper proposes a method to quickly obtain the point cloud model of the tunnel surface and semi-automatically identify discontinuity using 3D laser scanner. The method is centered on an improved Regional Growth (RG) algorithm, with key principles and processing flow encompassing: (1) Voxel filtering; (2) Normal calculation for point clouds; (3) Improved RG algorithm; (4) Calculation of discontinuity orientation. An analysis of parametric sensitivity which proved its good robustness was carried out to assess the performance of the method. To ascertain the effectiveness of the method in semi-automatically identifying tunnel discontinuities, three sets of test data (standard cube, rock slope in Colorado, and Xulong hydroelectric station tunnel) were chosen. By comparing the analysis results of the proposed method with those of alternative methods (DSE and CloudCompare), the validation of its efficacy in tunnel discontinuity detection was achieved.
doi_str_mv 10.1007/s10706-023-02692-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3045379967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045379967</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-a7609d4dee30d7d8956662e694ee7942f924e7196a0d2fae2c691d80805f9e253</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS7Cabo9Z_hYJC6zmEzWxJabM12T302xut4M3DMDPM772BR8g1h1sOoO8yBw2KgZCllBFMnJAJr7VkvBbmlEzAKGCSN-KcXOS8ASgY8Al5X-IuMDcO_c4NoaVzj3EIXWjL1kfad3Q1xohb-hhy25dTHMNwoA8uo6cFkI90UeZEl62LMcT1JTnr3Dbj1W-fko_np9XslS3eXuaz-wVzwsiBOa3A-MojSvDaN6ZWSglUpkLUphKdERVqbpQDLzqHolWG-wYaqDuDopZTcnP03af-c8Q82E0_plheWglVLbUxShdKHKk29Tkn7Ow-hZ1LB8vBfidnj8nZkpz9Sc6KIpJHUS5wXGP6s_5H9QUnfm_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045379967</pqid></control><display><type>article</type><title>Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Na ; Xiao, Ao ; Li, Lihua ; Xiao, Henglin</creator><creatorcontrib>Chen, Na ; Xiao, Ao ; Li, Lihua ; Xiao, Henglin</creatorcontrib><description>Obtaining accurate discontinuity information on a tunnel is essential for tunnel stability assessment, and usually requires geological surveys on the tunnel surface. However, traditional manual measurement methods are time-consuming, labor-intensive, and provide limited data, particularly when dealing with complex tunnel rock masses. To address this problem, this paper proposes a method to quickly obtain the point cloud model of the tunnel surface and semi-automatically identify discontinuity using 3D laser scanner. The method is centered on an improved Regional Growth (RG) algorithm, with key principles and processing flow encompassing: (1) Voxel filtering; (2) Normal calculation for point clouds; (3) Improved RG algorithm; (4) Calculation of discontinuity orientation. An analysis of parametric sensitivity which proved its good robustness was carried out to assess the performance of the method. To ascertain the effectiveness of the method in semi-automatically identifying tunnel discontinuities, three sets of test data (standard cube, rock slope in Colorado, and Xulong hydroelectric station tunnel) were chosen. By comparing the analysis results of the proposed method with those of alternative methods (DSE and CloudCompare), the validation of its efficacy in tunnel discontinuity detection was achieved.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-023-02692-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Automation ; Civil Engineering ; Discontinuity ; Earth and Environmental Science ; Earth Sciences ; Geological surveys ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydroelectric power ; Hydrogeology ; Laser applications ; Lasers ; Measurement methods ; Methods ; Original Paper ; Parameter sensitivity ; Performance assessment ; Rock masses ; Rocks ; Scanners ; Stability analysis ; Terrestrial Pollution ; Three dimensional models ; Tunnels ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2024-06, Vol.42 (4), p.2577-2599</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-a7609d4dee30d7d8956662e694ee7942f924e7196a0d2fae2c691d80805f9e253</cites><orcidid>0000-0001-5756-6257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-023-02692-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-023-02692-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Chen, Na</creatorcontrib><creatorcontrib>Xiao, Ao</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Xiao, Henglin</creatorcontrib><title>Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Obtaining accurate discontinuity information on a tunnel is essential for tunnel stability assessment, and usually requires geological surveys on the tunnel surface. However, traditional manual measurement methods are time-consuming, labor-intensive, and provide limited data, particularly when dealing with complex tunnel rock masses. To address this problem, this paper proposes a method to quickly obtain the point cloud model of the tunnel surface and semi-automatically identify discontinuity using 3D laser scanner. The method is centered on an improved Regional Growth (RG) algorithm, with key principles and processing flow encompassing: (1) Voxel filtering; (2) Normal calculation for point clouds; (3) Improved RG algorithm; (4) Calculation of discontinuity orientation. An analysis of parametric sensitivity which proved its good robustness was carried out to assess the performance of the method. To ascertain the effectiveness of the method in semi-automatically identifying tunnel discontinuities, three sets of test data (standard cube, rock slope in Colorado, and Xulong hydroelectric station tunnel) were chosen. By comparing the analysis results of the proposed method with those of alternative methods (DSE and CloudCompare), the validation of its efficacy in tunnel discontinuity detection was achieved.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Civil Engineering</subject><subject>Discontinuity</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geological surveys</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydroelectric power</subject><subject>Hydrogeology</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Parameter sensitivity</subject><subject>Performance assessment</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Scanners</subject><subject>Stability analysis</subject><subject>Terrestrial Pollution</subject><subject>Three dimensional models</subject><subject>Tunnels</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS7Cabo9Z_hYJC6zmEzWxJabM12T302xut4M3DMDPM772BR8g1h1sOoO8yBw2KgZCllBFMnJAJr7VkvBbmlEzAKGCSN-KcXOS8ASgY8Al5X-IuMDcO_c4NoaVzj3EIXWjL1kfad3Q1xohb-hhy25dTHMNwoA8uo6cFkI90UeZEl62LMcT1JTnr3Dbj1W-fko_np9XslS3eXuaz-wVzwsiBOa3A-MojSvDaN6ZWSglUpkLUphKdERVqbpQDLzqHolWG-wYaqDuDopZTcnP03af-c8Q82E0_plheWglVLbUxShdKHKk29Tkn7Ow-hZ1LB8vBfidnj8nZkpz9Sc6KIpJHUS5wXGP6s_5H9QUnfm_g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Na</creator><creator>Xiao, Ao</creator><creator>Li, Lihua</creator><creator>Xiao, Henglin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5756-6257</orcidid></search><sort><creationdate>20240601</creationdate><title>Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning</title><author>Chen, Na ; Xiao, Ao ; Li, Lihua ; Xiao, Henglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-a7609d4dee30d7d8956662e694ee7942f924e7196a0d2fae2c691d80805f9e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Civil Engineering</topic><topic>Discontinuity</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geological surveys</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydroelectric power</topic><topic>Hydrogeology</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Parameter sensitivity</topic><topic>Performance assessment</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Scanners</topic><topic>Stability analysis</topic><topic>Terrestrial Pollution</topic><topic>Three dimensional models</topic><topic>Tunnels</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Na</creatorcontrib><creatorcontrib>Xiao, Ao</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Xiao, Henglin</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Na</au><au>Xiao, Ao</au><au>Li, Lihua</au><au>Xiao, Henglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>42</volume><issue>4</issue><spage>2577</spage><epage>2599</epage><pages>2577-2599</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Obtaining accurate discontinuity information on a tunnel is essential for tunnel stability assessment, and usually requires geological surveys on the tunnel surface. However, traditional manual measurement methods are time-consuming, labor-intensive, and provide limited data, particularly when dealing with complex tunnel rock masses. To address this problem, this paper proposes a method to quickly obtain the point cloud model of the tunnel surface and semi-automatically identify discontinuity using 3D laser scanner. The method is centered on an improved Regional Growth (RG) algorithm, with key principles and processing flow encompassing: (1) Voxel filtering; (2) Normal calculation for point clouds; (3) Improved RG algorithm; (4) Calculation of discontinuity orientation. An analysis of parametric sensitivity which proved its good robustness was carried out to assess the performance of the method. To ascertain the effectiveness of the method in semi-automatically identifying tunnel discontinuities, three sets of test data (standard cube, rock slope in Colorado, and Xulong hydroelectric station tunnel) were chosen. By comparing the analysis results of the proposed method with those of alternative methods (DSE and CloudCompare), the validation of its efficacy in tunnel discontinuity detection was achieved.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-023-02692-2</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5756-6257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2024-06, Vol.42 (4), p.2577-2599
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_3045379967
source Springer Nature - Complete Springer Journals
subjects Algorithms
Automation
Civil Engineering
Discontinuity
Earth and Environmental Science
Earth Sciences
Geological surveys
Geology
Geotechnical Engineering & Applied Earth Sciences
Hydroelectric power
Hydrogeology
Laser applications
Lasers
Measurement methods
Methods
Original Paper
Parameter sensitivity
Performance assessment
Rock masses
Rocks
Scanners
Stability analysis
Terrestrial Pollution
Three dimensional models
Tunnels
Waste Management/Waste Technology
title Semi-automatic Identification of Tunnel Discontinuity Based on 3D Laser Scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-automatic%20Identification%20of%20Tunnel%20Discontinuity%20Based%20on%203D%20Laser%20Scanning&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Chen,%20Na&rft.date=2024-06-01&rft.volume=42&rft.issue=4&rft.spage=2577&rft.epage=2599&rft.pages=2577-2599&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-023-02692-2&rft_dat=%3Cproquest_cross%3E3045379967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3045379967&rft_id=info:pmid/&rfr_iscdi=true