Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability
During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2024-04, Vol.129 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of geophysical research. Space physics |
container_volume | 129 |
creator | Michael, A. T. Sorathia, K. A. Ukhorskiy, A. Y. Albert, J. Shen, X. Li, W. Merkin, V. G. |
description | During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.
Key Points
We developed a novel global test particle model of storm‐time radiation belt dynamics with local wave‐particle interactions
Evolution of the magnetic field and density yields local variations of the magnitude and resonant energy of the wave‐particle interactions
The new model enables separation of electron acceleration and loss processes driven by both transport and local wave‐particle interactions |
doi_str_mv | 10.1029/2023JA032175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3045300065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045300065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3025-6453299a6d51690fc7cc64eae25023c5dfd83f28b8ed1a1de3e12df724b6a3c13</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpvPsCCV1eTzGa7e1yLVktFaKvXkCYTSdk2NbtF9uYj-Iw-iSlV8ORcZpj5-GfmJ-Sc0StGeXnNKYdJRYGzoTgiPc7yMi0zyo9_ayjoKRk0zYrGKGKLiR6pRsE3zdfH51yrGpNHb7B2m9fE22Te-rCOk4VbYzJTxqnW-U1yg3WbvKjg1NLVru3OyIlVdYODn9wnz3e3i9F9On0aP4yqaaqBcpHmmQBelio3Iq6mVg-1zjNUyEU8XAtjTQGWF8sCDVPMICDjxg55tswVaAZ9cnHQ3Qb_tsOmlSu_C5u4UgKN4vGpXETq8kDp_V8BrdwGt1ahk4zKvU_yr08RhwP-7mrs_mXlZDyrRAGlgG9BSmlb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045300065</pqid></control><display><type>article</type><title>Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability</title><source>Wiley Online Library All Journals</source><creator>Michael, A. T. ; Sorathia, K. A. ; Ukhorskiy, A. Y. ; Albert, J. ; Shen, X. ; Li, W. ; Merkin, V. G.</creator><creatorcontrib>Michael, A. T. ; Sorathia, K. A. ; Ukhorskiy, A. Y. ; Albert, J. ; Shen, X. ; Li, W. ; Merkin, V. G.</creatorcontrib><description>During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.
Key Points
We developed a novel global test particle model of storm‐time radiation belt dynamics with local wave‐particle interactions
Evolution of the magnetic field and density yields local variations of the magnitude and resonant energy of the wave‐particle interactions
The new model enables separation of electron acceleration and loss processes driven by both transport and local wave‐particle interactions</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2023JA032175</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Chorus waves ; Cold plasmas ; Diffusion coefficient ; Electromagnetic fields ; Electron flux ; Electron trajectories ; Electrons ; Evolution ; Geomagnetic storms ; Geomagnetism ; Jupiter ; Magnetic fields ; Magnetic storms ; Magnetopause ; Magnetospheres ; Model testing ; Outer radiation belt ; Particle interactions ; Pitch (inclination) ; Plasma density ; Precipitation ; Propagation modes ; Radiation ; Radiation belts ; Relativistic effects ; Storms ; Wave propagation</subject><ispartof>Journal of geophysical research. Space physics, 2024-04, Vol.129 (4), p.n/a</ispartof><rights>2024 The Johns Hopkins University Applied Physics Laboratory and The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3025-6453299a6d51690fc7cc64eae25023c5dfd83f28b8ed1a1de3e12df724b6a3c13</cites><orcidid>0000-0002-3326-4024 ; 0000-0002-6011-5470 ; 0000-0003-4344-5424 ; 0000-0001-9494-7630 ; 0000-0003-1743-4262 ; 0000-0003-3495-4550 ; 0000-0003-2227-1242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023JA032175$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023JA032175$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Michael, A. T.</creatorcontrib><creatorcontrib>Sorathia, K. A.</creatorcontrib><creatorcontrib>Ukhorskiy, A. Y.</creatorcontrib><creatorcontrib>Albert, J.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Li, W.</creatorcontrib><creatorcontrib>Merkin, V. G.</creatorcontrib><title>Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability</title><title>Journal of geophysical research. Space physics</title><description>During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.
Key Points
We developed a novel global test particle model of storm‐time radiation belt dynamics with local wave‐particle interactions
Evolution of the magnetic field and density yields local variations of the magnitude and resonant energy of the wave‐particle interactions
The new model enables separation of electron acceleration and loss processes driven by both transport and local wave‐particle interactions</description><subject>Chorus waves</subject><subject>Cold plasmas</subject><subject>Diffusion coefficient</subject><subject>Electromagnetic fields</subject><subject>Electron flux</subject><subject>Electron trajectories</subject><subject>Electrons</subject><subject>Evolution</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Jupiter</subject><subject>Magnetic fields</subject><subject>Magnetic storms</subject><subject>Magnetopause</subject><subject>Magnetospheres</subject><subject>Model testing</subject><subject>Outer radiation belt</subject><subject>Particle interactions</subject><subject>Pitch (inclination)</subject><subject>Plasma density</subject><subject>Precipitation</subject><subject>Propagation modes</subject><subject>Radiation</subject><subject>Radiation belts</subject><subject>Relativistic effects</subject><subject>Storms</subject><subject>Wave propagation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMFKAzEQhoMoWGpvPsCCV1eTzGa7e1yLVktFaKvXkCYTSdk2NbtF9uYj-Iw-iSlV8ORcZpj5-GfmJ-Sc0StGeXnNKYdJRYGzoTgiPc7yMi0zyo9_ayjoKRk0zYrGKGKLiR6pRsE3zdfH51yrGpNHb7B2m9fE22Te-rCOk4VbYzJTxqnW-U1yg3WbvKjg1NLVru3OyIlVdYODn9wnz3e3i9F9On0aP4yqaaqBcpHmmQBelio3Iq6mVg-1zjNUyEU8XAtjTQGWF8sCDVPMICDjxg55tswVaAZ9cnHQ3Qb_tsOmlSu_C5u4UgKN4vGpXETq8kDp_V8BrdwGt1ahk4zKvU_yr08RhwP-7mrs_mXlZDyrRAGlgG9BSmlb</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Michael, A. T.</creator><creator>Sorathia, K. A.</creator><creator>Ukhorskiy, A. Y.</creator><creator>Albert, J.</creator><creator>Shen, X.</creator><creator>Li, W.</creator><creator>Merkin, V. G.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3326-4024</orcidid><orcidid>https://orcid.org/0000-0002-6011-5470</orcidid><orcidid>https://orcid.org/0000-0003-4344-5424</orcidid><orcidid>https://orcid.org/0000-0001-9494-7630</orcidid><orcidid>https://orcid.org/0000-0003-1743-4262</orcidid><orcidid>https://orcid.org/0000-0003-3495-4550</orcidid><orcidid>https://orcid.org/0000-0003-2227-1242</orcidid></search><sort><creationdate>202404</creationdate><title>Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability</title><author>Michael, A. T. ; Sorathia, K. A. ; Ukhorskiy, A. Y. ; Albert, J. ; Shen, X. ; Li, W. ; Merkin, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3025-6453299a6d51690fc7cc64eae25023c5dfd83f28b8ed1a1de3e12df724b6a3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chorus waves</topic><topic>Cold plasmas</topic><topic>Diffusion coefficient</topic><topic>Electromagnetic fields</topic><topic>Electron flux</topic><topic>Electron trajectories</topic><topic>Electrons</topic><topic>Evolution</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Jupiter</topic><topic>Magnetic fields</topic><topic>Magnetic storms</topic><topic>Magnetopause</topic><topic>Magnetospheres</topic><topic>Model testing</topic><topic>Outer radiation belt</topic><topic>Particle interactions</topic><topic>Pitch (inclination)</topic><topic>Plasma density</topic><topic>Precipitation</topic><topic>Propagation modes</topic><topic>Radiation</topic><topic>Radiation belts</topic><topic>Relativistic effects</topic><topic>Storms</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michael, A. T.</creatorcontrib><creatorcontrib>Sorathia, K. A.</creatorcontrib><creatorcontrib>Ukhorskiy, A. Y.</creatorcontrib><creatorcontrib>Albert, J.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Li, W.</creatorcontrib><creatorcontrib>Merkin, V. G.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michael, A. T.</au><au>Sorathia, K. A.</au><au>Ukhorskiy, A. Y.</au><au>Albert, J.</au><au>Shen, X.</au><au>Li, W.</au><au>Merkin, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>129</volume><issue>4</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>During geomagnetic storms relativistic outer radiation belt electron flux exhibits large variations on rapid time scales of minutes to days. Many competing acceleration and loss processes contribute to the dynamic variability of the radiation belts; however, distinguishing the relative contribution of each mechanism remains a major challenge as they often occur simultaneously and over a wide range of spatiotemporal scales. In this study, we develop a new comprehensive model for storm‐time radiation belt dynamics by incorporating electron wave‐particle interactions with parallel propagating whistler mode waves into our global test‐particle model of the outer belt. Electron trajectories are evolved through the electromagnetic fields generated from the Multiscale Atmosphere‐Geospace Environment (MAGE) global geospace model. Pitch angle scattering and energization of the test particles are derived from analytical expressions for quasi‐linear diffusion coefficients that depend directly on the magnetic field and density from the magnetosphere simulation. Using a study of the 17 March 2013 geomagnetic storm, we demonstrate that resonance with lower band chorus waves can produce rapid relativistic flux enhancements during the main phase of the storm. While electron loss from the outer radiation belt is dominated by loss through the magnetopause, wave‐particle interactions drive significant atmospheric precipitation. We also show that the storm‐time magnetic field and cold plasma density evolution produces strong, local variations of the magnitude and energy of the wave‐particle interactions and is critical to fully capturing the dynamic variability of the radiation belts caused by wave‐particle interactions.
Key Points
We developed a novel global test particle model of storm‐time radiation belt dynamics with local wave‐particle interactions
Evolution of the magnetic field and density yields local variations of the magnitude and resonant energy of the wave‐particle interactions
The new model enables separation of electron acceleration and loss processes driven by both transport and local wave‐particle interactions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023JA032175</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3326-4024</orcidid><orcidid>https://orcid.org/0000-0002-6011-5470</orcidid><orcidid>https://orcid.org/0000-0003-4344-5424</orcidid><orcidid>https://orcid.org/0000-0001-9494-7630</orcidid><orcidid>https://orcid.org/0000-0003-1743-4262</orcidid><orcidid>https://orcid.org/0000-0003-3495-4550</orcidid><orcidid>https://orcid.org/0000-0003-2227-1242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2024-04, Vol.129 (4), p.n/a |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_3045300065 |
source | Wiley Online Library All Journals |
subjects | Chorus waves Cold plasmas Diffusion coefficient Electromagnetic fields Electron flux Electron trajectories Electrons Evolution Geomagnetic storms Geomagnetism Jupiter Magnetic fields Magnetic storms Magnetopause Magnetospheres Model testing Outer radiation belt Particle interactions Pitch (inclination) Plasma density Precipitation Propagation modes Radiation Radiation belts Relativistic effects Storms Wave propagation |
title | Cross‐Scale Modeling of Storm‐Time Radiation Belt Variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%E2%80%90Scale%20Modeling%20of%20Storm%E2%80%90Time%20Radiation%20Belt%20Variability&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Michael,%20A.%20T.&rft.date=2024-04&rft.volume=129&rft.issue=4&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2023JA032175&rft_dat=%3Cproquest_cross%3E3045300065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3045300065&rft_id=info:pmid/&rfr_iscdi=true |