Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations

Realistic modeling of the dynamics and variability in the upper mesosphere and lower thermosphere (UMLT) is critical to understand the coupling between different layers of the whole atmosphere system. Here we present simulations of the UMLT temperatures at ∼100 km altitude for one year during 2014 b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2024-04, Vol.129 (4), p.n/a
Hauptverfasser: Liu, Guiping, Klenzing, Jeffrey H., McDonald, Sarah E., Sassi, Fabrizio, Rowland, Douglas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 129
creator Liu, Guiping
Klenzing, Jeffrey H.
McDonald, Sarah E.
Sassi, Fabrizio
Rowland, Douglas E.
description Realistic modeling of the dynamics and variability in the upper mesosphere and lower thermosphere (UMLT) is critical to understand the coupling between different layers of the whole atmosphere system. Here we present simulations of the UMLT temperatures at ∼100 km altitude for one year during 2014 by the Whole Atmosphere Community Climate Model with thermosphere-ionosphere extension (WACCM-X) constrained below ∼90 km using meteorological analysis products of the high-altitude version of Navy Global Environmental Model (NAVGEM-HA). The model results are sampled at the same times and latitudes and longitudes as the satellite observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER). Comparisons show that the observed and modeled daily zonal mean temperatures are correlated (r ∼0.5–0.7) at most latitudes between ±50°. Both the observations and simulations show an annual variation at mid-latitudes in two hemispheres with the temperature maximum in summer and the minimum in winter, and at lower latitudes the semiannual variation becomes stronger having the temperature maximums at equinoxes and the minimums during solstices. However, the temperatures observed are on average ∼5–10 K (3%–5%) smaller than the model and the observations show a larger variability. Moreover, migrating tidal amplitudes are mostly overestimated by the model. Though differences are noticed, the WACCM-X simulations with NAVGEM-HA meteorological analyses are overall consistent with the SABER observations. These results support that whole atmosphere models informed by high altitude observations would help to simulate the UMLT variability and the atmosphere and ionosphere coupling.
doi_str_mv 10.1029/2024JA032536
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3045300023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045300023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2856-ca1383476931e1455cbcdf089c66291357326be2830891594139ce1434c6131d3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhSMEEgjYGBkssVKwfWMTjyEqBdSC1JafLXLdWwhK4mCnoG48ArwiT4JLQWLCi32PvnN9dKJoj9EjRrk65pTHlykFLkCuRVucSdVRMeXrv29I6Ga06_0TDScJEhNb0ccAvfXNIzokup6Svn1FR8Zhrn7lMVYNOt3OHXoyKqp5qVucksmC3KVZNvh8e78nd0X7SK7S2153OZ-nZIAtWmdL-1AYXZK01uXCB__yj8xWjXZhRWvJKD3tDsn1xKN70W1ha78Tbcx06XH3596Obs664-y807_uXWRpv2N4ImTHaAYJxCdSAUMWC2EmZjqjiTJScsVAnACXE-QJBI0JFTNQJoAQG8mATWE7OljtbZx9nqNv8yc7dyGnz4HGAkJJHAJ1uKKMs947nOWNKyrtFjmj-bL3_G_vAYcV_lqUuPiXzS97w1QkoJau_ZWr1l7ndev8NxkSxDIk-QJtw4wS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045300023</pqid></control><display><type>article</type><title>Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>NASA Technical Reports Server</source><creator>Liu, Guiping ; Klenzing, Jeffrey H. ; McDonald, Sarah E. ; Sassi, Fabrizio ; Rowland, Douglas E.</creator><creatorcontrib>Liu, Guiping ; Klenzing, Jeffrey H. ; McDonald, Sarah E. ; Sassi, Fabrizio ; Rowland, Douglas E.</creatorcontrib><description>Realistic modeling of the dynamics and variability in the upper mesosphere and lower thermosphere (UMLT) is critical to understand the coupling between different layers of the whole atmosphere system. Here we present simulations of the UMLT temperatures at ∼100 km altitude for one year during 2014 by the Whole Atmosphere Community Climate Model with thermosphere-ionosphere extension (WACCM-X) constrained below ∼90 km using meteorological analysis products of the high-altitude version of Navy Global Environmental Model (NAVGEM-HA). The model results are sampled at the same times and latitudes and longitudes as the satellite observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER). Comparisons show that the observed and modeled daily zonal mean temperatures are correlated (r ∼0.5–0.7) at most latitudes between ±50°. Both the observations and simulations show an annual variation at mid-latitudes in two hemispheres with the temperature maximum in summer and the minimum in winter, and at lower latitudes the semiannual variation becomes stronger having the temperature maximums at equinoxes and the minimums during solstices. However, the temperatures observed are on average ∼5–10 K (3%–5%) smaller than the model and the observations show a larger variability. Moreover, migrating tidal amplitudes are mostly overestimated by the model. Though differences are noticed, the WACCM-X simulations with NAVGEM-HA meteorological analyses are overall consistent with the SABER observations. These results support that whole atmosphere models informed by high altitude observations would help to simulate the UMLT variability and the atmosphere and ionosphere coupling.</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2024JA032536</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Geophysical Union</publisher><subject>Altitude ; Annual variations ; Atmosphere ; Atmospheric models ; Broadband ; Climate models ; Coupling ; data and model comparison ; Emission ; Environmental modeling ; Hemispheres ; High altitude ; Ionosphere ; Ionospheric models ; Latitude ; Lower atmosphere ; Lower thermosphere ; Mean temperatures ; Mesosphere ; mesosphere and lower thermosphere ; meteorological analysis ; Meteorology and Climatology ; Navy ; Radiometry ; Satellite observation ; Simulation ; Sounding ; Space Sciences (General) ; Spacecraft ; Thermosphere ; Tidal amplitude ; tides ; Upper atmosphere ; whole atmosphere model</subject><ispartof>Journal of geophysical research. Space physics, 2024-04, Vol.129 (4), p.n/a</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>2024. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2856-ca1383476931e1455cbcdf089c66291357326be2830891594139ce1434c6131d3</cites><orcidid>0000-0003-3027-8399 ; 0000-0001-8321-6074 ; 0000-0001-9235-409X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024JA032536$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024JA032536$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,796,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Guiping</creatorcontrib><creatorcontrib>Klenzing, Jeffrey H.</creatorcontrib><creatorcontrib>McDonald, Sarah E.</creatorcontrib><creatorcontrib>Sassi, Fabrizio</creatorcontrib><creatorcontrib>Rowland, Douglas E.</creatorcontrib><title>Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations</title><title>Journal of geophysical research. Space physics</title><description>Realistic modeling of the dynamics and variability in the upper mesosphere and lower thermosphere (UMLT) is critical to understand the coupling between different layers of the whole atmosphere system. Here we present simulations of the UMLT temperatures at ∼100 km altitude for one year during 2014 by the Whole Atmosphere Community Climate Model with thermosphere-ionosphere extension (WACCM-X) constrained below ∼90 km using meteorological analysis products of the high-altitude version of Navy Global Environmental Model (NAVGEM-HA). The model results are sampled at the same times and latitudes and longitudes as the satellite observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER). Comparisons show that the observed and modeled daily zonal mean temperatures are correlated (r ∼0.5–0.7) at most latitudes between ±50°. Both the observations and simulations show an annual variation at mid-latitudes in two hemispheres with the temperature maximum in summer and the minimum in winter, and at lower latitudes the semiannual variation becomes stronger having the temperature maximums at equinoxes and the minimums during solstices. However, the temperatures observed are on average ∼5–10 K (3%–5%) smaller than the model and the observations show a larger variability. Moreover, migrating tidal amplitudes are mostly overestimated by the model. Though differences are noticed, the WACCM-X simulations with NAVGEM-HA meteorological analyses are overall consistent with the SABER observations. These results support that whole atmosphere models informed by high altitude observations would help to simulate the UMLT variability and the atmosphere and ionosphere coupling.</description><subject>Altitude</subject><subject>Annual variations</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Broadband</subject><subject>Climate models</subject><subject>Coupling</subject><subject>data and model comparison</subject><subject>Emission</subject><subject>Environmental modeling</subject><subject>Hemispheres</subject><subject>High altitude</subject><subject>Ionosphere</subject><subject>Ionospheric models</subject><subject>Latitude</subject><subject>Lower atmosphere</subject><subject>Lower thermosphere</subject><subject>Mean temperatures</subject><subject>Mesosphere</subject><subject>mesosphere and lower thermosphere</subject><subject>meteorological analysis</subject><subject>Meteorology and Climatology</subject><subject>Navy</subject><subject>Radiometry</subject><subject>Satellite observation</subject><subject>Simulation</subject><subject>Sounding</subject><subject>Space Sciences (General)</subject><subject>Spacecraft</subject><subject>Thermosphere</subject><subject>Tidal amplitude</subject><subject>tides</subject><subject>Upper atmosphere</subject><subject>whole atmosphere model</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kL1OwzAUhSMEEgjYGBkssVKwfWMTjyEqBdSC1JafLXLdWwhK4mCnoG48ArwiT4JLQWLCi32PvnN9dKJoj9EjRrk65pTHlykFLkCuRVucSdVRMeXrv29I6Ga06_0TDScJEhNb0ccAvfXNIzokup6Svn1FR8Zhrn7lMVYNOt3OHXoyKqp5qVucksmC3KVZNvh8e78nd0X7SK7S2153OZ-nZIAtWmdL-1AYXZK01uXCB__yj8xWjXZhRWvJKD3tDsn1xKN70W1ha78Tbcx06XH3596Obs664-y807_uXWRpv2N4ImTHaAYJxCdSAUMWC2EmZjqjiTJScsVAnACXE-QJBI0JFTNQJoAQG8mATWE7OljtbZx9nqNv8yc7dyGnz4HGAkJJHAJ1uKKMs947nOWNKyrtFjmj-bL3_G_vAYcV_lqUuPiXzS97w1QkoJau_ZWr1l7ndev8NxkSxDIk-QJtw4wS</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Liu, Guiping</creator><creator>Klenzing, Jeffrey H.</creator><creator>McDonald, Sarah E.</creator><creator>Sassi, Fabrizio</creator><creator>Rowland, Douglas E.</creator><general>American Geophysical Union</general><general>Blackwell Publishing Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3027-8399</orcidid><orcidid>https://orcid.org/0000-0001-8321-6074</orcidid><orcidid>https://orcid.org/0000-0001-9235-409X</orcidid></search><sort><creationdate>202404</creationdate><title>Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations</title><author>Liu, Guiping ; Klenzing, Jeffrey H. ; McDonald, Sarah E. ; Sassi, Fabrizio ; Rowland, Douglas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2856-ca1383476931e1455cbcdf089c66291357326be2830891594139ce1434c6131d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Altitude</topic><topic>Annual variations</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Broadband</topic><topic>Climate models</topic><topic>Coupling</topic><topic>data and model comparison</topic><topic>Emission</topic><topic>Environmental modeling</topic><topic>Hemispheres</topic><topic>High altitude</topic><topic>Ionosphere</topic><topic>Ionospheric models</topic><topic>Latitude</topic><topic>Lower atmosphere</topic><topic>Lower thermosphere</topic><topic>Mean temperatures</topic><topic>Mesosphere</topic><topic>mesosphere and lower thermosphere</topic><topic>meteorological analysis</topic><topic>Meteorology and Climatology</topic><topic>Navy</topic><topic>Radiometry</topic><topic>Satellite observation</topic><topic>Simulation</topic><topic>Sounding</topic><topic>Space Sciences (General)</topic><topic>Spacecraft</topic><topic>Thermosphere</topic><topic>Tidal amplitude</topic><topic>tides</topic><topic>Upper atmosphere</topic><topic>whole atmosphere model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guiping</creatorcontrib><creatorcontrib>Klenzing, Jeffrey H.</creatorcontrib><creatorcontrib>McDonald, Sarah E.</creatorcontrib><creatorcontrib>Sassi, Fabrizio</creatorcontrib><creatorcontrib>Rowland, Douglas E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guiping</au><au>Klenzing, Jeffrey H.</au><au>McDonald, Sarah E.</au><au>Sassi, Fabrizio</au><au>Rowland, Douglas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2024-04</date><risdate>2024</risdate><volume>129</volume><issue>4</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Realistic modeling of the dynamics and variability in the upper mesosphere and lower thermosphere (UMLT) is critical to understand the coupling between different layers of the whole atmosphere system. Here we present simulations of the UMLT temperatures at ∼100 km altitude for one year during 2014 by the Whole Atmosphere Community Climate Model with thermosphere-ionosphere extension (WACCM-X) constrained below ∼90 km using meteorological analysis products of the high-altitude version of Navy Global Environmental Model (NAVGEM-HA). The model results are sampled at the same times and latitudes and longitudes as the satellite observations from Thermosphere Ionosphere and Mesosphere Electric Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER). Comparisons show that the observed and modeled daily zonal mean temperatures are correlated (r ∼0.5–0.7) at most latitudes between ±50°. Both the observations and simulations show an annual variation at mid-latitudes in two hemispheres with the temperature maximum in summer and the minimum in winter, and at lower latitudes the semiannual variation becomes stronger having the temperature maximums at equinoxes and the minimums during solstices. However, the temperatures observed are on average ∼5–10 K (3%–5%) smaller than the model and the observations show a larger variability. Moreover, migrating tidal amplitudes are mostly overestimated by the model. Though differences are noticed, the WACCM-X simulations with NAVGEM-HA meteorological analyses are overall consistent with the SABER observations. These results support that whole atmosphere models informed by high altitude observations would help to simulate the UMLT variability and the atmosphere and ionosphere coupling.</abstract><cop>Goddard Space Flight Center</cop><pub>American Geophysical Union</pub><doi>10.1029/2024JA032536</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3027-8399</orcidid><orcidid>https://orcid.org/0000-0001-8321-6074</orcidid><orcidid>https://orcid.org/0000-0001-9235-409X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2024-04, Vol.129 (4), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_3045300023
source Wiley Online Library Journals Frontfile Complete; NASA Technical Reports Server
subjects Altitude
Annual variations
Atmosphere
Atmospheric models
Broadband
Climate models
Coupling
data and model comparison
Emission
Environmental modeling
Hemispheres
High altitude
Ionosphere
Ionospheric models
Latitude
Lower atmosphere
Lower thermosphere
Mean temperatures
Mesosphere
mesosphere and lower thermosphere
meteorological analysis
Meteorology and Climatology
Navy
Radiometry
Satellite observation
Simulation
Sounding
Space Sciences (General)
Spacecraft
Thermosphere
Tidal amplitude
tides
Upper atmosphere
whole atmosphere model
title Mesosphere and Lower Thermosphere Temperatures Simulated by WACCM‐X With NAVGEM‐HA Meteorological Analyses and Compared to SABER Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesosphere%20and%20Lower%20Thermosphere%20Temperatures%20Simulated%20by%20WACCM%E2%80%90X%20With%20NAVGEM%E2%80%90HA%20Meteorological%20Analyses%20and%20Compared%20to%20SABER%20Observations&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Liu,%20Guiping&rft.date=2024-04&rft.volume=129&rft.issue=4&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2024JA032536&rft_dat=%3Cproquest_cross%3E3045300023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3045300023&rft_id=info:pmid/&rfr_iscdi=true