Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches

In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Asimopoulos, Dimitris, Siniosoglou, Ilias, Argyriou, Vasileios, Karamitsou, Thomai, Fountoukidis, Eleftherios, Goudos, Sotirios K, Moscholios, Ioannis D, Psannis, Konstantinos E, Sarigiannidis, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Asimopoulos, Dimitris
Siniosoglou, Ilias
Argyriou, Vasileios
Karamitsou, Thomai
Fountoukidis, Eleftherios
Goudos, Sotirios K
Moscholios, Ioannis D
Psannis, Konstantinos E
Sarigiannidis, Panagiotis
description In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehensive benchmarking study comparing the performance of transformer-based models and Large Language Models(LLM) against traditional architectures for text anonymisation. Utilising the CoNLL-2003 dataset, known for its robustness and diversity, we evaluate several models. Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods. Notably, while modern models exhibit advanced capabilities in capturing con textual nuances, certain traditional architectures still keep high performance. This work aims to guide researchers in selecting the most suitable model for their anonymisation needs, while also shedding light on potential paths for future advancements in the field.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044856149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044856149</sourcerecordid><originalsourceid>FETCH-proquest_journals_30448561493</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgKOo_LHgWatJq9VZF8aIXvcvSrDa1TWqSFv17I_gBnh7Mm-mxIRdiPktjzgds4lwZRRFfLHmSiCFTG9J5UaN9KH2HTHaoc5JwoZeHTBv9rpVDr4yGI_nCSLeGDLambtAG3BGcfSvfEP6T6agC1CG2KNW3wQqyprEG84LcmPVvWDma_HbEpvvdZXuYBeHZkvPX0rQ2NO4qojhOk8U8Xon_rA-Z4kgr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044856149</pqid></control><display><type>article</type><title>Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches</title><source>Free E- Journals</source><creator>Asimopoulos, Dimitris ; Siniosoglou, Ilias ; Argyriou, Vasileios ; Karamitsou, Thomai ; Fountoukidis, Eleftherios ; Goudos, Sotirios K ; Moscholios, Ioannis D ; Psannis, Konstantinos E ; Sarigiannidis, Panagiotis</creator><creatorcontrib>Asimopoulos, Dimitris ; Siniosoglou, Ilias ; Argyriou, Vasileios ; Karamitsou, Thomai ; Fountoukidis, Eleftherios ; Goudos, Sotirios K ; Moscholios, Ioannis D ; Psannis, Konstantinos E ; Sarigiannidis, Panagiotis</creatorcontrib><description>In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehensive benchmarking study comparing the performance of transformer-based models and Large Language Models(LLM) against traditional architectures for text anonymisation. Utilising the CoNLL-2003 dataset, known for its robustness and diversity, we evaluate several models. Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods. Notably, while modern models exhibit advanced capabilities in capturing con textual nuances, certain traditional architectures still keep high performance. This work aims to guide researchers in selecting the most suitable model for their anonymisation needs, while also shedding light on potential paths for future advancements in the field.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Comparative studies ; Large language models</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Asimopoulos, Dimitris</creatorcontrib><creatorcontrib>Siniosoglou, Ilias</creatorcontrib><creatorcontrib>Argyriou, Vasileios</creatorcontrib><creatorcontrib>Karamitsou, Thomai</creatorcontrib><creatorcontrib>Fountoukidis, Eleftherios</creatorcontrib><creatorcontrib>Goudos, Sotirios K</creatorcontrib><creatorcontrib>Moscholios, Ioannis D</creatorcontrib><creatorcontrib>Psannis, Konstantinos E</creatorcontrib><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><title>Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches</title><title>arXiv.org</title><description>In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehensive benchmarking study comparing the performance of transformer-based models and Large Language Models(LLM) against traditional architectures for text anonymisation. Utilising the CoNLL-2003 dataset, known for its robustness and diversity, we evaluate several models. Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods. Notably, while modern models exhibit advanced capabilities in capturing con textual nuances, certain traditional architectures still keep high performance. This work aims to guide researchers in selecting the most suitable model for their anonymisation needs, while also shedding light on potential paths for future advancements in the field.</description><subject>Benchmarks</subject><subject>Comparative studies</subject><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKwjAQBYMgKOo_LHgWatJq9VZF8aIXvcvSrDa1TWqSFv17I_gBnh7Mm-mxIRdiPktjzgds4lwZRRFfLHmSiCFTG9J5UaN9KH2HTHaoc5JwoZeHTBv9rpVDr4yGI_nCSLeGDLambtAG3BGcfSvfEP6T6agC1CG2KNW3wQqyprEG84LcmPVvWDma_HbEpvvdZXuYBeHZkvPX0rQ2NO4qojhOk8U8Xon_rA-Z4kgr</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Asimopoulos, Dimitris</creator><creator>Siniosoglou, Ilias</creator><creator>Argyriou, Vasileios</creator><creator>Karamitsou, Thomai</creator><creator>Fountoukidis, Eleftherios</creator><creator>Goudos, Sotirios K</creator><creator>Moscholios, Ioannis D</creator><creator>Psannis, Konstantinos E</creator><creator>Sarigiannidis, Panagiotis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240422</creationdate><title>Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches</title><author>Asimopoulos, Dimitris ; Siniosoglou, Ilias ; Argyriou, Vasileios ; Karamitsou, Thomai ; Fountoukidis, Eleftherios ; Goudos, Sotirios K ; Moscholios, Ioannis D ; Psannis, Konstantinos E ; Sarigiannidis, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30448561493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Comparative studies</topic><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Asimopoulos, Dimitris</creatorcontrib><creatorcontrib>Siniosoglou, Ilias</creatorcontrib><creatorcontrib>Argyriou, Vasileios</creatorcontrib><creatorcontrib>Karamitsou, Thomai</creatorcontrib><creatorcontrib>Fountoukidis, Eleftherios</creatorcontrib><creatorcontrib>Goudos, Sotirios K</creatorcontrib><creatorcontrib>Moscholios, Ioannis D</creatorcontrib><creatorcontrib>Psannis, Konstantinos E</creatorcontrib><creatorcontrib>Sarigiannidis, Panagiotis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asimopoulos, Dimitris</au><au>Siniosoglou, Ilias</au><au>Argyriou, Vasileios</au><au>Karamitsou, Thomai</au><au>Fountoukidis, Eleftherios</au><au>Goudos, Sotirios K</au><au>Moscholios, Ioannis D</au><au>Psannis, Konstantinos E</au><au>Sarigiannidis, Panagiotis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches</atitle><jtitle>arXiv.org</jtitle><date>2024-04-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehensive benchmarking study comparing the performance of transformer-based models and Large Language Models(LLM) against traditional architectures for text anonymisation. Utilising the CoNLL-2003 dataset, known for its robustness and diversity, we evaluate several models. Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods. Notably, while modern models exhibit advanced capabilities in capturing con textual nuances, certain traditional architectures still keep high performance. This work aims to guide researchers in selecting the most suitable model for their anonymisation needs, while also shedding light on potential paths for future advancements in the field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3044856149
source Free E- Journals
subjects Benchmarks
Comparative studies
Large language models
title Benchmarking Advanced Text Anonymisation Methods: A Comparative Study on Novel and Traditional Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Benchmarking%20Advanced%20Text%20Anonymisation%20Methods:%20A%20Comparative%20Study%20on%20Novel%20and%20Traditional%20Approaches&rft.jtitle=arXiv.org&rft.au=Asimopoulos,%20Dimitris&rft.date=2024-04-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044856149%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044856149&rft_id=info:pmid/&rfr_iscdi=true