Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication

This work reports on the modeling, fabrication, and experimental characterization of a 13 GHz 30% Scandium-doped Aluminum Nitride (ScAlN) Overmoded Bulk Acoustic Resonator (OBAR) for high-frequency Radio Frequency (RF) applications, notably in 5G technology and beyond. The Finite Element Analysis (F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Gubinelli, Walter, Simeoni, Pietro, Tetro, Ryan, Colombo, Luca, Rinaldi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gubinelli, Walter
Simeoni, Pietro
Tetro, Ryan
Colombo, Luca
Rinaldi, Matteo
description This work reports on the modeling, fabrication, and experimental characterization of a 13 GHz 30% Scandium-doped Aluminum Nitride (ScAlN) Overmoded Bulk Acoustic Resonator (OBAR) for high-frequency Radio Frequency (RF) applications, notably in 5G technology and beyond. The Finite Element Analysis (FEA) optimization process targets the top and bottom metal electrode thicknesses, balancing the electromechanical coupling coefficient and acoustic energy distribution to enhance device Figure of Merit (FOM). Experimental results on fabricated devices employing platinum and aluminum as bottom and top electrode, respectively, demonstrate a quality factor at resonance (Qs) of 210 and a coupling coefficient (kt2) of 5.2% at 13.3 GHz for the second bulk thickness overtone, effectively validating the simulation framework and hinting at the possible implementation of OBARs for advanced RF filters in 5G networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044845512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044845512</sourcerecordid><originalsourceid>FETCH-proquest_journals_30448455123</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgKNo_LHgu1CRVr1oUTwoqeFNKu0K0yWo26_v14AM8zcBMTw21MdN8YbUeqIz5XhSFns11WZqhuhybOrROPCw78S58ZedSdC3C_o3RU4strKR7wLIh4eQaOCBTqBNFhhtF2EiSiHB2ETtkhoq8l-CaOjkKY9W_1R1j9uNITTbrU7XNn5Fegpyud5IYvulqCmsXtiyn2vx3fQCcC0S6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044845512</pqid></control><display><type>article</type><title>Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication</title><source>Free E- Journals</source><creator>Gubinelli, Walter ; Simeoni, Pietro ; Tetro, Ryan ; Colombo, Luca ; Rinaldi, Matteo</creator><creatorcontrib>Gubinelli, Walter ; Simeoni, Pietro ; Tetro, Ryan ; Colombo, Luca ; Rinaldi, Matteo</creatorcontrib><description>This work reports on the modeling, fabrication, and experimental characterization of a 13 GHz 30% Scandium-doped Aluminum Nitride (ScAlN) Overmoded Bulk Acoustic Resonator (OBAR) for high-frequency Radio Frequency (RF) applications, notably in 5G technology and beyond. The Finite Element Analysis (FEA) optimization process targets the top and bottom metal electrode thicknesses, balancing the electromechanical coupling coefficient and acoustic energy distribution to enhance device Figure of Merit (FOM). Experimental results on fabricated devices employing platinum and aluminum as bottom and top electrode, respectively, demonstrate a quality factor at resonance (Qs) of 210 and a coupling coefficient (kt2) of 5.2% at 13.3 GHz for the second bulk thickness overtone, effectively validating the simulation framework and hinting at the possible implementation of OBARs for advanced RF filters in 5G networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>5G mobile communication ; Aluminum nitride ; Bulk acoustic wave devices ; Coupling coefficients ; Electrodes ; Energy distribution ; Figure of merit ; Finite element method ; Radio frequency ; Resonators ; Scandium ; Thickness ; Wireless communications</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gubinelli, Walter</creatorcontrib><creatorcontrib>Simeoni, Pietro</creatorcontrib><creatorcontrib>Tetro, Ryan</creatorcontrib><creatorcontrib>Colombo, Luca</creatorcontrib><creatorcontrib>Rinaldi, Matteo</creatorcontrib><title>Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication</title><title>arXiv.org</title><description>This work reports on the modeling, fabrication, and experimental characterization of a 13 GHz 30% Scandium-doped Aluminum Nitride (ScAlN) Overmoded Bulk Acoustic Resonator (OBAR) for high-frequency Radio Frequency (RF) applications, notably in 5G technology and beyond. The Finite Element Analysis (FEA) optimization process targets the top and bottom metal electrode thicknesses, balancing the electromechanical coupling coefficient and acoustic energy distribution to enhance device Figure of Merit (FOM). Experimental results on fabricated devices employing platinum and aluminum as bottom and top electrode, respectively, demonstrate a quality factor at resonance (Qs) of 210 and a coupling coefficient (kt2) of 5.2% at 13.3 GHz for the second bulk thickness overtone, effectively validating the simulation framework and hinting at the possible implementation of OBARs for advanced RF filters in 5G networks.</description><subject>5G mobile communication</subject><subject>Aluminum nitride</subject><subject>Bulk acoustic wave devices</subject><subject>Coupling coefficients</subject><subject>Electrodes</subject><subject>Energy distribution</subject><subject>Figure of merit</subject><subject>Finite element method</subject><subject>Radio frequency</subject><subject>Resonators</subject><subject>Scandium</subject><subject>Thickness</subject><subject>Wireless communications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgKNo_LHgu1CRVr1oUTwoqeFNKu0K0yWo26_v14AM8zcBMTw21MdN8YbUeqIz5XhSFns11WZqhuhybOrROPCw78S58ZedSdC3C_o3RU4strKR7wLIh4eQaOCBTqBNFhhtF2EiSiHB2ETtkhoq8l-CaOjkKY9W_1R1j9uNITTbrU7XNn5Fegpyud5IYvulqCmsXtiyn2vx3fQCcC0S6</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Gubinelli, Walter</creator><creator>Simeoni, Pietro</creator><creator>Tetro, Ryan</creator><creator>Colombo, Luca</creator><creator>Rinaldi, Matteo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240423</creationdate><title>Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication</title><author>Gubinelli, Walter ; Simeoni, Pietro ; Tetro, Ryan ; Colombo, Luca ; Rinaldi, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30448455123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G mobile communication</topic><topic>Aluminum nitride</topic><topic>Bulk acoustic wave devices</topic><topic>Coupling coefficients</topic><topic>Electrodes</topic><topic>Energy distribution</topic><topic>Figure of merit</topic><topic>Finite element method</topic><topic>Radio frequency</topic><topic>Resonators</topic><topic>Scandium</topic><topic>Thickness</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Gubinelli, Walter</creatorcontrib><creatorcontrib>Simeoni, Pietro</creatorcontrib><creatorcontrib>Tetro, Ryan</creatorcontrib><creatorcontrib>Colombo, Luca</creatorcontrib><creatorcontrib>Rinaldi, Matteo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubinelli, Walter</au><au>Simeoni, Pietro</au><au>Tetro, Ryan</au><au>Colombo, Luca</au><au>Rinaldi, Matteo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication</atitle><jtitle>arXiv.org</jtitle><date>2024-04-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This work reports on the modeling, fabrication, and experimental characterization of a 13 GHz 30% Scandium-doped Aluminum Nitride (ScAlN) Overmoded Bulk Acoustic Resonator (OBAR) for high-frequency Radio Frequency (RF) applications, notably in 5G technology and beyond. The Finite Element Analysis (FEA) optimization process targets the top and bottom metal electrode thicknesses, balancing the electromechanical coupling coefficient and acoustic energy distribution to enhance device Figure of Merit (FOM). Experimental results on fabricated devices employing platinum and aluminum as bottom and top electrode, respectively, demonstrate a quality factor at resonance (Qs) of 210 and a coupling coefficient (kt2) of 5.2% at 13.3 GHz for the second bulk thickness overtone, effectively validating the simulation framework and hinting at the possible implementation of OBARs for advanced RF filters in 5G networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3044845512
source Free E- Journals
subjects 5G mobile communication
Aluminum nitride
Bulk acoustic wave devices
Coupling coefficients
Electrodes
Energy distribution
Figure of merit
Finite element method
Radio frequency
Resonators
Scandium
Thickness
Wireless communications
title Scandium Aluminum Nitride Overmoded Bulk Acoustic Resonators for Future Wireless Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scandium%20Aluminum%20Nitride%20Overmoded%20Bulk%20Acoustic%20Resonators%20for%20Future%20Wireless%20Communication&rft.jtitle=arXiv.org&rft.au=Gubinelli,%20Walter&rft.date=2024-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044845512%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044845512&rft_id=info:pmid/&rfr_iscdi=true