Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations

GaN high-electron-mobility transistor (HEMT) has superior features of wide band gap, high electron mobility and very high electric field strength due to its material advantages. By using the GaN HEMT, switching frequency can be enhanced up to megahertz with extremely high efficiency. Unfortunately,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.55551-55567
Hauptverfasser: Faizan, Muhammad, Han, Kai, Wang, Xiaolei, Yousaf, Muhammad Zain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55567
container_issue
container_start_page 55551
container_title IEEE access
container_volume 12
creator Faizan, Muhammad
Han, Kai
Wang, Xiaolei
Yousaf, Muhammad Zain
description GaN high-electron-mobility transistor (HEMT) has superior features of wide band gap, high electron mobility and very high electric field strength due to its material advantages. By using the GaN HEMT, switching frequency can be enhanced up to megahertz with extremely high efficiency. Unfortunately, GaN HEMTs accomplished by undesirable switching oscillations and voltage spikes due to extremely fast switching frequencies with very high {dv}/{dt} , {di}/{dt} and parasitic parameters. In this paper, RLC equivalent circuit models are developed for turn on and turn off conditions, including all parasitic components. In addition, the relative effect of each parasitic parameter is analyzed and estimated. Moreover, simple mathematical model is developed for theoretical analysis of switching oscillation phenomenon and, for guidance of snubber or damping circuit design. To validate these simple equivalent circuit models, both circuit simulation and experimental measurements are employed.
doi_str_mv 10.1109/ACCESS.2024.3354378
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3044655208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400472</ieee_id><doaj_id>oai_doaj_org_article_aba3e204c4684831af1842e17a5143eb</doaj_id><sourcerecordid>3044655208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7bb5a803fc4d46d446e6cb5a6b2ca2ce786914f8d990b88fc727082261fa58b23</originalsourceid><addsrcrecordid>eNpNUctuwjAQjKpWKqJ8QXuI1HOo33GOFFGKxONAe7Y2jgNGIaZxUMXf1xBUsZddzc6MvZooesZoiDHK3kbj8WS9HhJE2JBSzmgq76IewSJLKKfi_mZ-jAbe71AoGSCe9qLlAtqt2UNrNVTxwhWmSt7BmyIe1VCdvPUx1EW8sK3dBJKrY1fGU1jG61_b6q2tN_HKa1tVl6V_ih5KqLwZXHs_-v6YfI0_k_lqOhuP5ommPGuTNM85SERLzQomCsaEETpAIicaiDapFBlmpSyyDOVSljolKZKECFwClzmh_WjW-RYOdurQ2D00J-XAqgvgmo2CJtxUGQU5UEMQ00xIJimGEktGDE6BY0ZNHrxeO69D436Oxrdq545NuN4risLXOCdIBhbtWLpx3jem_H8VI3XOQXU5qHMO6ppDUL10KmuMuVEwhFhK6B8rLoKz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044655208</pqid></control><display><type>article</type><title>Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Faizan, Muhammad ; Han, Kai ; Wang, Xiaolei ; Yousaf, Muhammad Zain</creator><creatorcontrib>Faizan, Muhammad ; Han, Kai ; Wang, Xiaolei ; Yousaf, Muhammad Zain</creatorcontrib><description><![CDATA[GaN high-electron-mobility transistor (HEMT) has superior features of wide band gap, high electron mobility and very high electric field strength due to its material advantages. By using the GaN HEMT, switching frequency can be enhanced up to megahertz with extremely high efficiency. Unfortunately, GaN HEMTs accomplished by undesirable switching oscillations and voltage spikes due to extremely fast switching frequencies with very high <inline-formula> <tex-math notation="LaTeX">{dv}/{dt} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{di}/{dt} </tex-math></inline-formula> and parasitic parameters. In this paper, RLC equivalent circuit models are developed for turn on and turn off conditions, including all parasitic components. In addition, the relative effect of each parasitic parameter is analyzed and estimated. Moreover, simple mathematical model is developed for theoretical analysis of switching oscillation phenomenon and, for guidance of snubber or damping circuit design. To validate these simple equivalent circuit models, both circuit simulation and experimental measurements are employed.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3354378</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit design ; Damping ; Electric field strength ; Equivalent circuits ; Gallium nitrides ; GaN HEMT ; HEMTs ; High electron mobility transistors ; Integrated circuit modeling ; Mathematical models ; MOSFET ; Oscillations ; Oscillators ; Parameters ; parasitic components ; RLC equivalent circuit model ; Semiconductor devices ; snubber circuit ; Switches ; Switching ; Switching circuits ; switching loss reduction ; switching oscillations</subject><ispartof>IEEE access, 2024, Vol.12, p.55551-55567</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-7bb5a803fc4d46d446e6cb5a6b2ca2ce786914f8d990b88fc727082261fa58b23</cites><orcidid>0000-0003-3948-1756 ; 0000-0001-8672-4269 ; 0000-0001-9431-0058 ; 0000-0001-7166-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400472$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Faizan, Muhammad</creatorcontrib><creatorcontrib>Han, Kai</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Yousaf, Muhammad Zain</creatorcontrib><title>Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[GaN high-electron-mobility transistor (HEMT) has superior features of wide band gap, high electron mobility and very high electric field strength due to its material advantages. By using the GaN HEMT, switching frequency can be enhanced up to megahertz with extremely high efficiency. Unfortunately, GaN HEMTs accomplished by undesirable switching oscillations and voltage spikes due to extremely fast switching frequencies with very high <inline-formula> <tex-math notation="LaTeX">{dv}/{dt} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{di}/{dt} </tex-math></inline-formula> and parasitic parameters. In this paper, RLC equivalent circuit models are developed for turn on and turn off conditions, including all parasitic components. In addition, the relative effect of each parasitic parameter is analyzed and estimated. Moreover, simple mathematical model is developed for theoretical analysis of switching oscillation phenomenon and, for guidance of snubber or damping circuit design. To validate these simple equivalent circuit models, both circuit simulation and experimental measurements are employed.]]></description><subject>Circuit design</subject><subject>Damping</subject><subject>Electric field strength</subject><subject>Equivalent circuits</subject><subject>Gallium nitrides</subject><subject>GaN HEMT</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>MOSFET</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Parameters</subject><subject>parasitic components</subject><subject>RLC equivalent circuit model</subject><subject>Semiconductor devices</subject><subject>snubber circuit</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching circuits</subject><subject>switching loss reduction</subject><subject>switching oscillations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQjKpWKqJ8QXuI1HOo33GOFFGKxONAe7Y2jgNGIaZxUMXf1xBUsZddzc6MvZooesZoiDHK3kbj8WS9HhJE2JBSzmgq76IewSJLKKfi_mZ-jAbe71AoGSCe9qLlAtqt2UNrNVTxwhWmSt7BmyIe1VCdvPUx1EW8sK3dBJKrY1fGU1jG61_b6q2tN_HKa1tVl6V_ih5KqLwZXHs_-v6YfI0_k_lqOhuP5ommPGuTNM85SERLzQomCsaEETpAIicaiDapFBlmpSyyDOVSljolKZKECFwClzmh_WjW-RYOdurQ2D00J-XAqgvgmo2CJtxUGQU5UEMQ00xIJimGEktGDE6BY0ZNHrxeO69D436Oxrdq545NuN4risLXOCdIBhbtWLpx3jem_H8VI3XOQXU5qHMO6ppDUL10KmuMuVEwhFhK6B8rLoKz</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Faizan, Muhammad</creator><creator>Han, Kai</creator><creator>Wang, Xiaolei</creator><creator>Yousaf, Muhammad Zain</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3948-1756</orcidid><orcidid>https://orcid.org/0000-0001-8672-4269</orcidid><orcidid>https://orcid.org/0000-0001-9431-0058</orcidid><orcidid>https://orcid.org/0000-0001-7166-6780</orcidid></search><sort><creationdate>2024</creationdate><title>Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations</title><author>Faizan, Muhammad ; Han, Kai ; Wang, Xiaolei ; Yousaf, Muhammad Zain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7bb5a803fc4d46d446e6cb5a6b2ca2ce786914f8d990b88fc727082261fa58b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit design</topic><topic>Damping</topic><topic>Electric field strength</topic><topic>Equivalent circuits</topic><topic>Gallium nitrides</topic><topic>GaN HEMT</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>MOSFET</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Parameters</topic><topic>parasitic components</topic><topic>RLC equivalent circuit model</topic><topic>Semiconductor devices</topic><topic>snubber circuit</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching circuits</topic><topic>switching loss reduction</topic><topic>switching oscillations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faizan, Muhammad</creatorcontrib><creatorcontrib>Han, Kai</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Yousaf, Muhammad Zain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faizan, Muhammad</au><au>Han, Kai</au><au>Wang, Xiaolei</au><au>Yousaf, Muhammad Zain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>55551</spage><epage>55567</epage><pages>55551-55567</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[GaN high-electron-mobility transistor (HEMT) has superior features of wide band gap, high electron mobility and very high electric field strength due to its material advantages. By using the GaN HEMT, switching frequency can be enhanced up to megahertz with extremely high efficiency. Unfortunately, GaN HEMTs accomplished by undesirable switching oscillations and voltage spikes due to extremely fast switching frequencies with very high <inline-formula> <tex-math notation="LaTeX">{dv}/{dt} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{di}/{dt} </tex-math></inline-formula> and parasitic parameters. In this paper, RLC equivalent circuit models are developed for turn on and turn off conditions, including all parasitic components. In addition, the relative effect of each parasitic parameter is analyzed and estimated. Moreover, simple mathematical model is developed for theoretical analysis of switching oscillation phenomenon and, for guidance of snubber or damping circuit design. To validate these simple equivalent circuit models, both circuit simulation and experimental measurements are employed.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3354378</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3948-1756</orcidid><orcidid>https://orcid.org/0000-0001-8672-4269</orcidid><orcidid>https://orcid.org/0000-0001-9431-0058</orcidid><orcidid>https://orcid.org/0000-0001-7166-6780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.55551-55567
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3044655208
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Circuit design
Damping
Electric field strength
Equivalent circuits
Gallium nitrides
GaN HEMT
HEMTs
High electron mobility transistors
Integrated circuit modeling
Mathematical models
MOSFET
Oscillations
Oscillators
Parameters
parasitic components
RLC equivalent circuit model
Semiconductor devices
snubber circuit
Switches
Switching
Switching circuits
switching loss reduction
switching oscillations
title Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model-Based%20Analysis%20and%20Mitigation%20of%20GaN%20Switching%20Oscillations&rft.jtitle=IEEE%20access&rft.au=Faizan,%20Muhammad&rft.date=2024&rft.volume=12&rft.spage=55551&rft.epage=55567&rft.pages=55551-55567&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3354378&rft_dat=%3Cproquest_doaj_%3E3044655208%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044655208&rft_id=info:pmid/&rft_ieee_id=10400472&rft_doaj_id=oai_doaj_org_article_aba3e204c4684831af1842e17a5143eb&rfr_iscdi=true