ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition
In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.55620-55631 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55631 |
---|---|
container_issue | |
container_start_page | 55620 |
container_title | IEEE access |
container_volume | 12 |
creator | Mosbah, Lamia Moalla, Ikram Hamdani, Tarek M. Neji, Bilel Beyrouthy, Taha Alimi, Adel M. |
description | In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems. |
doi_str_mv | 10.1109/ACCESS.2024.3379530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3044655129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10476585</ieee_id><doaj_id>oai_doaj_org_article_83ba6e1c8ae64ecd9a6c89df79ba41e6</doaj_id><sourcerecordid>3044655129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqf0Fegh4bk02H7vxICzbqoViodVzyGbflpR2U7Pbg__e1C3Sd3mPYWbeMAjdUzKhlKinvChm6_UkIQmfMJYqwcgVGiRUqjETTF5f3Ldo1LZbEieLkEgH6CWfLovVB3TPOMdTgANegAmNazY44rj2AefBlM7iqbfHPTRdi1dg_aZxnfPNHbqpza6F0XkP0dfr7LN4Hy-Wb_MiX4wtE6obi6qqFROZSYlQMqkrkADEEGskiTEEWCoqAMYJI0mZxptTK5VJmeVlKSUbonnvW3mz1Yfg9ib8aG-c_gN82GgTOmd3oDNWGgnUZgYkB1spI22mqjpVpeEUTl6Pvdch-O8jtJ3e-mNoYnzNCOdSCJqoyGI9ywbftgHq_6-U6FPvuu9dn3rX596j6qFXOQC4UPBUikywXyz7fH0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044655129</pqid></control><display><type>article</type><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</creator><creatorcontrib>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</creatorcontrib><description>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3379530</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arabic ; Artificial neural networks ; Bidirectional control ; BLSTM ; Character recognition ; CNNs ; Convolutional neural networks ; CTC ; Datasets ; Deep learning ; document recognition ; Documents ; Handwriting ; Handwriting recognition ; Hidden Markov models ; Long Term Evolution ; Machine learning ; OCR ; Optical character recognition ; Printed text ; Text recognition ; Words (language)</subject><ispartof>IEEE access, 2024, Vol.12, p.55620-55631</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</cites><orcidid>0000-0003-4703-3566 ; 0000-0002-8243-6056 ; 0000-0003-1147-4896 ; 0000-0002-5939-7116 ; 0009-0008-1285-5993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10476585$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Mosbah, Lamia</creatorcontrib><creatorcontrib>Moalla, Ikram</creatorcontrib><creatorcontrib>Hamdani, Tarek M.</creatorcontrib><creatorcontrib>Neji, Bilel</creatorcontrib><creatorcontrib>Beyrouthy, Taha</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</description><subject>Algorithms</subject><subject>Arabic</subject><subject>Artificial neural networks</subject><subject>Bidirectional control</subject><subject>BLSTM</subject><subject>Character recognition</subject><subject>CNNs</subject><subject>Convolutional neural networks</subject><subject>CTC</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>document recognition</subject><subject>Documents</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Long Term Evolution</subject><subject>Machine learning</subject><subject>OCR</subject><subject>Optical character recognition</subject><subject>Printed text</subject><subject>Text recognition</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqf0Fegh4bk02H7vxICzbqoViodVzyGbflpR2U7Pbg__e1C3Sd3mPYWbeMAjdUzKhlKinvChm6_UkIQmfMJYqwcgVGiRUqjETTF5f3Ldo1LZbEieLkEgH6CWfLovVB3TPOMdTgANegAmNazY44rj2AefBlM7iqbfHPTRdi1dg_aZxnfPNHbqpza6F0XkP0dfr7LN4Hy-Wb_MiX4wtE6obi6qqFROZSYlQMqkrkADEEGskiTEEWCoqAMYJI0mZxptTK5VJmeVlKSUbonnvW3mz1Yfg9ib8aG-c_gN82GgTOmd3oDNWGgnUZgYkB1spI22mqjpVpeEUTl6Pvdch-O8jtJ3e-mNoYnzNCOdSCJqoyGI9ywbftgHq_6-U6FPvuu9dn3rX596j6qFXOQC4UPBUikywXyz7fH0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mosbah, Lamia</creator><creator>Moalla, Ikram</creator><creator>Hamdani, Tarek M.</creator><creator>Neji, Bilel</creator><creator>Beyrouthy, Taha</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4703-3566</orcidid><orcidid>https://orcid.org/0000-0002-8243-6056</orcidid><orcidid>https://orcid.org/0000-0003-1147-4896</orcidid><orcidid>https://orcid.org/0000-0002-5939-7116</orcidid><orcidid>https://orcid.org/0009-0008-1285-5993</orcidid></search><sort><creationdate>2024</creationdate><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><author>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arabic</topic><topic>Artificial neural networks</topic><topic>Bidirectional control</topic><topic>BLSTM</topic><topic>Character recognition</topic><topic>CNNs</topic><topic>Convolutional neural networks</topic><topic>CTC</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>document recognition</topic><topic>Documents</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Long Term Evolution</topic><topic>Machine learning</topic><topic>OCR</topic><topic>Optical character recognition</topic><topic>Printed text</topic><topic>Text recognition</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosbah, Lamia</creatorcontrib><creatorcontrib>Moalla, Ikram</creatorcontrib><creatorcontrib>Hamdani, Tarek M.</creatorcontrib><creatorcontrib>Neji, Bilel</creatorcontrib><creatorcontrib>Beyrouthy, Taha</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosbah, Lamia</au><au>Moalla, Ikram</au><au>Hamdani, Tarek M.</au><au>Neji, Bilel</au><au>Beyrouthy, Taha</au><au>Alimi, Adel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>55620</spage><epage>55631</epage><pages>55620-55631</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3379530</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4703-3566</orcidid><orcidid>https://orcid.org/0000-0002-8243-6056</orcidid><orcidid>https://orcid.org/0000-0003-1147-4896</orcidid><orcidid>https://orcid.org/0000-0002-5939-7116</orcidid><orcidid>https://orcid.org/0009-0008-1285-5993</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.55620-55631 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3044655129 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Arabic Artificial neural networks Bidirectional control BLSTM Character recognition CNNs Convolutional neural networks CTC Datasets Deep learning document recognition Documents Handwriting Handwriting recognition Hidden Markov models Long Term Evolution Machine learning OCR Optical character recognition Printed text Text recognition Words (language) |
title | ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADOCRNet:%20A%20Deep%20Learning%20OCR%20for%20Arabic%20Documents%20Recognition&rft.jtitle=IEEE%20access&rft.au=Mosbah,%20Lamia&rft.date=2024&rft.volume=12&rft.spage=55620&rft.epage=55631&rft.pages=55620-55631&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3379530&rft_dat=%3Cproquest_doaj_%3E3044655129%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044655129&rft_id=info:pmid/&rft_ieee_id=10476585&rft_doaj_id=oai_doaj_org_article_83ba6e1c8ae64ecd9a6c89df79ba41e6&rfr_iscdi=true |