ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition

In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.55620-55631
Hauptverfasser: Mosbah, Lamia, Moalla, Ikram, Hamdani, Tarek M., Neji, Bilel, Beyrouthy, Taha, Alimi, Adel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55631
container_issue
container_start_page 55620
container_title IEEE access
container_volume 12
creator Mosbah, Lamia
Moalla, Ikram
Hamdani, Tarek M.
Neji, Bilel
Beyrouthy, Taha
Alimi, Adel M.
description In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.
doi_str_mv 10.1109/ACCESS.2024.3379530
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3044655129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10476585</ieee_id><doaj_id>oai_doaj_org_article_83ba6e1c8ae64ecd9a6c89df79ba41e6</doaj_id><sourcerecordid>3044655129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqf0Fegh4bk02H7vxICzbqoViodVzyGbflpR2U7Pbg__e1C3Sd3mPYWbeMAjdUzKhlKinvChm6_UkIQmfMJYqwcgVGiRUqjETTF5f3Ldo1LZbEieLkEgH6CWfLovVB3TPOMdTgANegAmNazY44rj2AefBlM7iqbfHPTRdi1dg_aZxnfPNHbqpza6F0XkP0dfr7LN4Hy-Wb_MiX4wtE6obi6qqFROZSYlQMqkrkADEEGskiTEEWCoqAMYJI0mZxptTK5VJmeVlKSUbonnvW3mz1Yfg9ib8aG-c_gN82GgTOmd3oDNWGgnUZgYkB1spI22mqjpVpeEUTl6Pvdch-O8jtJ3e-mNoYnzNCOdSCJqoyGI9ywbftgHq_6-U6FPvuu9dn3rX596j6qFXOQC4UPBUikywXyz7fH0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044655129</pqid></control><display><type>article</type><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</creator><creatorcontrib>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</creatorcontrib><description>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3379530</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arabic ; Artificial neural networks ; Bidirectional control ; BLSTM ; Character recognition ; CNNs ; Convolutional neural networks ; CTC ; Datasets ; Deep learning ; document recognition ; Documents ; Handwriting ; Handwriting recognition ; Hidden Markov models ; Long Term Evolution ; Machine learning ; OCR ; Optical character recognition ; Printed text ; Text recognition ; Words (language)</subject><ispartof>IEEE access, 2024, Vol.12, p.55620-55631</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</cites><orcidid>0000-0003-4703-3566 ; 0000-0002-8243-6056 ; 0000-0003-1147-4896 ; 0000-0002-5939-7116 ; 0009-0008-1285-5993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10476585$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Mosbah, Lamia</creatorcontrib><creatorcontrib>Moalla, Ikram</creatorcontrib><creatorcontrib>Hamdani, Tarek M.</creatorcontrib><creatorcontrib>Neji, Bilel</creatorcontrib><creatorcontrib>Beyrouthy, Taha</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</description><subject>Algorithms</subject><subject>Arabic</subject><subject>Artificial neural networks</subject><subject>Bidirectional control</subject><subject>BLSTM</subject><subject>Character recognition</subject><subject>CNNs</subject><subject>Convolutional neural networks</subject><subject>CTC</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>document recognition</subject><subject>Documents</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Long Term Evolution</subject><subject>Machine learning</subject><subject>OCR</subject><subject>Optical character recognition</subject><subject>Printed text</subject><subject>Text recognition</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqf0Fegh4bk02H7vxICzbqoViodVzyGbflpR2U7Pbg__e1C3Sd3mPYWbeMAjdUzKhlKinvChm6_UkIQmfMJYqwcgVGiRUqjETTF5f3Ldo1LZbEieLkEgH6CWfLovVB3TPOMdTgANegAmNazY44rj2AefBlM7iqbfHPTRdi1dg_aZxnfPNHbqpza6F0XkP0dfr7LN4Hy-Wb_MiX4wtE6obi6qqFROZSYlQMqkrkADEEGskiTEEWCoqAMYJI0mZxptTK5VJmeVlKSUbonnvW3mz1Yfg9ib8aG-c_gN82GgTOmd3oDNWGgnUZgYkB1spI22mqjpVpeEUTl6Pvdch-O8jtJ3e-mNoYnzNCOdSCJqoyGI9ywbftgHq_6-U6FPvuu9dn3rX596j6qFXOQC4UPBUikywXyz7fH0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mosbah, Lamia</creator><creator>Moalla, Ikram</creator><creator>Hamdani, Tarek M.</creator><creator>Neji, Bilel</creator><creator>Beyrouthy, Taha</creator><creator>Alimi, Adel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4703-3566</orcidid><orcidid>https://orcid.org/0000-0002-8243-6056</orcidid><orcidid>https://orcid.org/0000-0003-1147-4896</orcidid><orcidid>https://orcid.org/0000-0002-5939-7116</orcidid><orcidid>https://orcid.org/0009-0008-1285-5993</orcidid></search><sort><creationdate>2024</creationdate><title>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</title><author>Mosbah, Lamia ; Moalla, Ikram ; Hamdani, Tarek M. ; Neji, Bilel ; Beyrouthy, Taha ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ddf9358a705962fde6ee0a0ca609575ec15dee340302b75de41c69a73c4bb663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arabic</topic><topic>Artificial neural networks</topic><topic>Bidirectional control</topic><topic>BLSTM</topic><topic>Character recognition</topic><topic>CNNs</topic><topic>Convolutional neural networks</topic><topic>CTC</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>document recognition</topic><topic>Documents</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Long Term Evolution</topic><topic>Machine learning</topic><topic>OCR</topic><topic>Optical character recognition</topic><topic>Printed text</topic><topic>Text recognition</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosbah, Lamia</creatorcontrib><creatorcontrib>Moalla, Ikram</creatorcontrib><creatorcontrib>Hamdani, Tarek M.</creatorcontrib><creatorcontrib>Neji, Bilel</creatorcontrib><creatorcontrib>Beyrouthy, Taha</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosbah, Lamia</au><au>Moalla, Ikram</au><au>Hamdani, Tarek M.</au><au>Neji, Bilel</au><au>Beyrouthy, Taha</au><au>Alimi, Adel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>55620</spage><epage>55631</epage><pages>55620-55631</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, Optical character recognition (OCR) has experienced a resurgence of interest especially for contemporary Arabic data. In fact, OCR development for printed and handwritten Arabic script is still a challenging task. These challenges are due to the specific characteristics of the Arabic script. In this work, we attempt to address these challenges by creating a deep learning OCR for Arabic document recognition called ADOCRNet. It is a novel deep learning framework whose architecture is built of layers of Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BLSTM) trained using Connectionist Temporal Classification (CTC) algorithm. In order to assess the performance of our OCR, the proposed system is performed on two printed text datasets which are P-KHATT (text line images) and APTI (word images). It's also evaluated on a handwritten Arabic text dataset IFN/ENIT (word images). According to the practical tests, the conceived model achieves strength recognition rates on the three datasets. ADOCRNet reaches a Character Error Rate (CER) of 0.01% on the P-KHATT dataset, 0.03% on the APTI dataset and a Word Error Rate (WER) of 1.09% on the IFN/ENIT dataset, which significantly outperforms the outcomes of the current systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3379530</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4703-3566</orcidid><orcidid>https://orcid.org/0000-0002-8243-6056</orcidid><orcidid>https://orcid.org/0000-0003-1147-4896</orcidid><orcidid>https://orcid.org/0000-0002-5939-7116</orcidid><orcidid>https://orcid.org/0009-0008-1285-5993</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.55620-55631
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3044655129
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Arabic
Artificial neural networks
Bidirectional control
BLSTM
Character recognition
CNNs
Convolutional neural networks
CTC
Datasets
Deep learning
document recognition
Documents
Handwriting
Handwriting recognition
Hidden Markov models
Long Term Evolution
Machine learning
OCR
Optical character recognition
Printed text
Text recognition
Words (language)
title ADOCRNet: A Deep Learning OCR for Arabic Documents Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADOCRNet:%20A%20Deep%20Learning%20OCR%20for%20Arabic%20Documents%20Recognition&rft.jtitle=IEEE%20access&rft.au=Mosbah,%20Lamia&rft.date=2024&rft.volume=12&rft.spage=55620&rft.epage=55631&rft.pages=55620-55631&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3379530&rft_dat=%3Cproquest_doaj_%3E3044655129%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044655129&rft_id=info:pmid/&rft_ieee_id=10476585&rft_doaj_id=oai_doaj_org_article_83ba6e1c8ae64ecd9a6c89df79ba41e6&rfr_iscdi=true