Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation

Automatically generated oral panoramic X-ray report is highly beneficial for improving the efficiency of dental diagnosis. However, recent solutions adopt holistic methods, resulting in a cursory description of the oral condition. This may lead to reports lacking details, such as specific sites or l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.7462-7474
Hauptverfasser: Gao, Nan, Yao, Renyuan, Liang, Ronghua, Chen, Peng, Liu, Tianshuang, Dang, Yuanjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7474
container_issue
container_start_page 7462
container_title IEEE transactions on multimedia
container_volume 26
creator Gao, Nan
Yao, Renyuan
Liang, Ronghua
Chen, Peng
Liu, Tianshuang
Dang, Yuanjie
description Automatically generated oral panoramic X-ray report is highly beneficial for improving the efficiency of dental diagnosis. However, recent solutions adopt holistic methods, resulting in a cursory description of the oral condition. This may lead to reports lacking details, such as specific sites or lesion contours. Therefore, we propose a Multi-Level objective Alignment Transformer(MLAT) network, which integrates all tooth and disease objects into a positional alignment graph to extract fine-grained object-level features. Specifically, we introduce a novel Object-Level Collaborative Encoder (OLCE) module, which uses a positional alignment graph to construct object relationships. OLCE enhances object-level feature extraction by eliminating interference information between pathologically unrelated objects. In addition, we build a high-quality panoramic X-ray image-report dataset consisting of 562 sets of images and reports labeled by 13 experienced dental specialists. Experiments on the collected dataset show that the proposed MLAT significantly outperforms the state-of-the-art baselines by more than 5% in 4 different metrics, including BLEUs, Meteor, Rouge, and BERTScore.
doi_str_mv 10.1109/TMM.2024.3368922
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3044650183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443573</ieee_id><sourcerecordid>3044650183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2837d8fa576aa2d88eff970b429b1db5d1285b8400ff60ce901248f54a7f315e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--cpMlqXYKrRUSgV3wyR5I1OSSZ2khf57U-rC1X2Lc--DkySPFCaUQv6yXa0mDJiYcJ7pnLGrZERzQVMApa6HWzJIc0bhNrnruh0AFRLUKClXh7r36RKPWJN1scOy90ck09p_hwZDT7bRhs61scFIhiBzHzBdRDtERdbR1uTDhjbaxpfkK93YE9ngvo09WWDAaHvfhvvkxtm6w4e_HCef89ft7C1drhfvs-kyLZmQfco0V5V2VqrMWlZpjc7lCgrB8oJWhawo07LQAsC5DErMgTKhnRRWOU4l8nHyfNndx_bngF1vdu0hhuGl4SBEJoFqPlBwocrYdl1EZ_bRNzaeDAVzVmkGleas0vypHCpPl4pHxH-4EFwqzn8BnS5vWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044650183</pqid></control><display><type>article</type><title>Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Nan ; Yao, Renyuan ; Liang, Ronghua ; Chen, Peng ; Liu, Tianshuang ; Dang, Yuanjie</creator><creatorcontrib>Gao, Nan ; Yao, Renyuan ; Liang, Ronghua ; Chen, Peng ; Liu, Tianshuang ; Dang, Yuanjie</creatorcontrib><description>Automatically generated oral panoramic X-ray report is highly beneficial for improving the efficiency of dental diagnosis. However, recent solutions adopt holistic methods, resulting in a cursory description of the oral condition. This may lead to reports lacking details, such as specific sites or lesion contours. Therefore, we propose a Multi-Level objective Alignment Transformer(MLAT) network, which integrates all tooth and disease objects into a positional alignment graph to extract fine-grained object-level features. Specifically, we introduce a novel Object-Level Collaborative Encoder (OLCE) module, which uses a positional alignment graph to construct object relationships. OLCE enhances object-level feature extraction by eliminating interference information between pathologically unrelated objects. In addition, we build a high-quality panoramic X-ray image-report dataset consisting of 562 sets of images and reports labeled by 13 experienced dental specialists. Experiments on the collected dataset show that the proposed MLAT significantly outperforms the state-of-the-art baselines by more than 5% in 4 different metrics, including BLEUs, Meteor, Rouge, and BERTScore.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3368922</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alignment ; Bones ; Bridge-tower connection ; Datasets ; Diseases ; Feature extraction ; fine-grained image report captioning ; Image quality ; Irrigation ; Medical imaging ; oral panoramic X-ray ; positional alignment graph ; radiology report generation ; Teeth ; Transformers ; Visualization ; X-ray imaging</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.7462-7474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2837d8fa576aa2d88eff970b429b1db5d1285b8400ff60ce901248f54a7f315e3</cites><orcidid>0000-0001-6122-0574 ; 0000-0003-2077-9608 ; 0009-0000-3501-7476 ; 0000-0001-7938-6724 ; 0000-0003-4545-7197 ; 0000-0002-8302-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4023,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>Yao, Renyuan</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Liu, Tianshuang</creatorcontrib><creatorcontrib>Dang, Yuanjie</creatorcontrib><title>Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Automatically generated oral panoramic X-ray report is highly beneficial for improving the efficiency of dental diagnosis. However, recent solutions adopt holistic methods, resulting in a cursory description of the oral condition. This may lead to reports lacking details, such as specific sites or lesion contours. Therefore, we propose a Multi-Level objective Alignment Transformer(MLAT) network, which integrates all tooth and disease objects into a positional alignment graph to extract fine-grained object-level features. Specifically, we introduce a novel Object-Level Collaborative Encoder (OLCE) module, which uses a positional alignment graph to construct object relationships. OLCE enhances object-level feature extraction by eliminating interference information between pathologically unrelated objects. In addition, we build a high-quality panoramic X-ray image-report dataset consisting of 562 sets of images and reports labeled by 13 experienced dental specialists. Experiments on the collected dataset show that the proposed MLAT significantly outperforms the state-of-the-art baselines by more than 5% in 4 different metrics, including BLEUs, Meteor, Rouge, and BERTScore.</description><subject>Alignment</subject><subject>Bones</subject><subject>Bridge-tower connection</subject><subject>Datasets</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>fine-grained image report captioning</subject><subject>Image quality</subject><subject>Irrigation</subject><subject>Medical imaging</subject><subject>oral panoramic X-ray</subject><subject>positional alignment graph</subject><subject>radiology report generation</subject><subject>Teeth</subject><subject>Transformers</subject><subject>Visualization</subject><subject>X-ray imaging</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--cpMlqXYKrRUSgV3wyR5I1OSSZ2khf57U-rC1X2Lc--DkySPFCaUQv6yXa0mDJiYcJ7pnLGrZERzQVMApa6HWzJIc0bhNrnruh0AFRLUKClXh7r36RKPWJN1scOy90ck09p_hwZDT7bRhs61scFIhiBzHzBdRDtERdbR1uTDhjbaxpfkK93YE9ngvo09WWDAaHvfhvvkxtm6w4e_HCef89ft7C1drhfvs-kyLZmQfco0V5V2VqrMWlZpjc7lCgrB8oJWhawo07LQAsC5DErMgTKhnRRWOU4l8nHyfNndx_bngF1vdu0hhuGl4SBEJoFqPlBwocrYdl1EZ_bRNzaeDAVzVmkGleas0vypHCpPl4pHxH-4EFwqzn8BnS5vWw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Nan</creator><creator>Yao, Renyuan</creator><creator>Liang, Ronghua</creator><creator>Chen, Peng</creator><creator>Liu, Tianshuang</creator><creator>Dang, Yuanjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6122-0574</orcidid><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0009-0000-3501-7476</orcidid><orcidid>https://orcid.org/0000-0001-7938-6724</orcidid><orcidid>https://orcid.org/0000-0003-4545-7197</orcidid><orcidid>https://orcid.org/0000-0002-8302-1338</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation</title><author>Gao, Nan ; Yao, Renyuan ; Liang, Ronghua ; Chen, Peng ; Liu, Tianshuang ; Dang, Yuanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2837d8fa576aa2d88eff970b429b1db5d1285b8400ff60ce901248f54a7f315e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Bones</topic><topic>Bridge-tower connection</topic><topic>Datasets</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>fine-grained image report captioning</topic><topic>Image quality</topic><topic>Irrigation</topic><topic>Medical imaging</topic><topic>oral panoramic X-ray</topic><topic>positional alignment graph</topic><topic>radiology report generation</topic><topic>Teeth</topic><topic>Transformers</topic><topic>Visualization</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Nan</creatorcontrib><creatorcontrib>Yao, Renyuan</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Liu, Tianshuang</creatorcontrib><creatorcontrib>Dang, Yuanjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Nan</au><au>Yao, Renyuan</au><au>Liang, Ronghua</au><au>Chen, Peng</au><au>Liu, Tianshuang</au><au>Dang, Yuanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>7462</spage><epage>7474</epage><pages>7462-7474</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Automatically generated oral panoramic X-ray report is highly beneficial for improving the efficiency of dental diagnosis. However, recent solutions adopt holistic methods, resulting in a cursory description of the oral condition. This may lead to reports lacking details, such as specific sites or lesion contours. Therefore, we propose a Multi-Level objective Alignment Transformer(MLAT) network, which integrates all tooth and disease objects into a positional alignment graph to extract fine-grained object-level features. Specifically, we introduce a novel Object-Level Collaborative Encoder (OLCE) module, which uses a positional alignment graph to construct object relationships. OLCE enhances object-level feature extraction by eliminating interference information between pathologically unrelated objects. In addition, we build a high-quality panoramic X-ray image-report dataset consisting of 562 sets of images and reports labeled by 13 experienced dental specialists. Experiments on the collected dataset show that the proposed MLAT significantly outperforms the state-of-the-art baselines by more than 5% in 4 different metrics, including BLEUs, Meteor, Rouge, and BERTScore.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2024.3368922</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6122-0574</orcidid><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0009-0000-3501-7476</orcidid><orcidid>https://orcid.org/0000-0001-7938-6724</orcidid><orcidid>https://orcid.org/0000-0003-4545-7197</orcidid><orcidid>https://orcid.org/0000-0002-8302-1338</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.7462-7474
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_3044650183
source IEEE Electronic Library (IEL)
subjects Alignment
Bones
Bridge-tower connection
Datasets
Diseases
Feature extraction
fine-grained image report captioning
Image quality
Irrigation
Medical imaging
oral panoramic X-ray
positional alignment graph
radiology report generation
Teeth
Transformers
Visualization
X-ray imaging
title Multi-Level Objective Alignment Transformer for Fine-Grained Oral Panoramic X-Ray Report Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Objective%20Alignment%20Transformer%20for%20Fine-Grained%20Oral%20Panoramic%20X-Ray%20Report%20Generation&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Gao,%20Nan&rft.date=2024&rft.volume=26&rft.spage=7462&rft.epage=7474&rft.pages=7462-7474&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3368922&rft_dat=%3Cproquest_RIE%3E3044650183%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044650183&rft_id=info:pmid/&rft_ieee_id=10443573&rfr_iscdi=true