In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries
Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their larg...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9477 |
---|---|
container_issue | 16 |
container_start_page | 9469 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Gao, Shilun Ma, Mengxiang Zhang, Youjia Li, Lin Zhu, Shuangshuang He, Yayue Yang, Dandan Yang, Huabin Cao, Peng-Fei |
description | Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li
+
) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li
+
diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an
in situ
polymerized network,
i.e
., poly[(poly(ethylene glycol) methyl ether methacrylate)-
r
-(vinyl ethylene carbonate)-
r
-(dimethyl aminopropyl methacrylamide)-
r
-(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10
−2
mS cm
−1
, such an
in situ
constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li
+
conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO
4
full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the
in situ
constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries. |
doi_str_mv | 10.1039/D3TA07586A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044121056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044121056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</originalsourceid><addsrcrecordid>eNpFUMtqwzAQFKWFhjSXfoGgt4LalWXL9jGkr0Cgl_RsJHtFFRQrlWRo_r4KKe1edmdnmIEh5JbDAwfRPj6J7RLqqpHLCzIroAJWl628_Lub5posYtxBngZAtu2MHNcjjTZNtPdjTGHqk_Uj9YaqkU4uBcXSpx0zGqhx-G21Q3rw7rjHQNFhn0IGCanxgcakTrRyjkXv7MDyI1POZotpz_aYlKNapYTBYrwhV0a5iIvfPScfL8_b1RvbvL-uV8sN6wveJFZqoaAsG1PjoBvgYAapmkK2Jcqhr2peiqJFWeqhVRWoQgM3skaozWAKLbSYk7uz7yH4rwlj6nZ-CmOO7EQ25gWHSmbV_VnVBx9jQNMdgt2rcOw4dKd2u_92xQ9ocW5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044121056</pqid></control><display><type>article</type><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</creator><creatorcontrib>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</creatorcontrib><description>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li
+
) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li
+
diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an
in situ
polymerized network,
i.e
., poly[(poly(ethylene glycol) methyl ether methacrylate)-
r
-(vinyl ethylene carbonate)-
r
-(dimethyl aminopropyl methacrylamide)-
r
-(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10
−2
mS cm
−1
, such an
in situ
constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li
+
conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO
4
full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the
in situ
constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA07586A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Carbonates ; Conductance ; Conductivity ; Cycles ; Electrolytes ; Ethene ; Glycol dimethacrylates ; Ion currents ; Kinetics ; Lithium ; Lithium batteries ; Lithium ions ; Metals ; Methacrylamide ; Molten salt electrolytes ; Polyethylene ; Polyethylene glycol ; Polymers ; Rechargeable batteries ; Room temperature ; Solid electrolytes ; Solid state ; Thickness</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</cites><orcidid>0000-0003-2391-1838 ; 0000-0003-3558-7166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Gao, Shilun</creatorcontrib><creatorcontrib>Ma, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Youjia</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhu, Shuangshuang</creatorcontrib><creatorcontrib>He, Yayue</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Yang, Huabin</creatorcontrib><creatorcontrib>Cao, Peng-Fei</creatorcontrib><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li
+
) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li
+
diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an
in situ
polymerized network,
i.e
., poly[(poly(ethylene glycol) methyl ether methacrylate)-
r
-(vinyl ethylene carbonate)-
r
-(dimethyl aminopropyl methacrylamide)-
r
-(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10
−2
mS cm
−1
, such an
in situ
constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li
+
conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO
4
full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the
in situ
constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</description><subject>Batteries</subject><subject>Carbonates</subject><subject>Conductance</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Electrolytes</subject><subject>Ethene</subject><subject>Glycol dimethacrylates</subject><subject>Ion currents</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ions</subject><subject>Metals</subject><subject>Methacrylamide</subject><subject>Molten salt electrolytes</subject><subject>Polyethylene</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thickness</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFUMtqwzAQFKWFhjSXfoGgt4LalWXL9jGkr0Cgl_RsJHtFFRQrlWRo_r4KKe1edmdnmIEh5JbDAwfRPj6J7RLqqpHLCzIroAJWl628_Lub5posYtxBngZAtu2MHNcjjTZNtPdjTGHqk_Uj9YaqkU4uBcXSpx0zGqhx-G21Q3rw7rjHQNFhn0IGCanxgcakTrRyjkXv7MDyI1POZotpz_aYlKNapYTBYrwhV0a5iIvfPScfL8_b1RvbvL-uV8sN6wveJFZqoaAsG1PjoBvgYAapmkK2Jcqhr2peiqJFWeqhVRWoQgM3skaozWAKLbSYk7uz7yH4rwlj6nZ-CmOO7EQ25gWHSmbV_VnVBx9jQNMdgt2rcOw4dKd2u_92xQ9ocW5I</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Gao, Shilun</creator><creator>Ma, Mengxiang</creator><creator>Zhang, Youjia</creator><creator>Li, Lin</creator><creator>Zhu, Shuangshuang</creator><creator>He, Yayue</creator><creator>Yang, Dandan</creator><creator>Yang, Huabin</creator><creator>Cao, Peng-Fei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0003-3558-7166</orcidid></search><sort><creationdate>20240423</creationdate><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><author>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Carbonates</topic><topic>Conductance</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Electrolytes</topic><topic>Ethene</topic><topic>Glycol dimethacrylates</topic><topic>Ion currents</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ions</topic><topic>Metals</topic><topic>Methacrylamide</topic><topic>Molten salt electrolytes</topic><topic>Polyethylene</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shilun</creatorcontrib><creatorcontrib>Ma, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Youjia</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhu, Shuangshuang</creatorcontrib><creatorcontrib>He, Yayue</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Yang, Huabin</creatorcontrib><creatorcontrib>Cao, Peng-Fei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shilun</au><au>Ma, Mengxiang</au><au>Zhang, Youjia</au><au>Li, Lin</au><au>Zhu, Shuangshuang</au><au>He, Yayue</au><au>Yang, Dandan</au><au>Yang, Huabin</au><au>Cao, Peng-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>12</volume><issue>16</issue><spage>9469</spage><epage>9477</epage><pages>9469-9477</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li
+
) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li
+
diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an
in situ
polymerized network,
i.e
., poly[(poly(ethylene glycol) methyl ether methacrylate)-
r
-(vinyl ethylene carbonate)-
r
-(dimethyl aminopropyl methacrylamide)-
r
-(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10
−2
mS cm
−1
, such an
in situ
constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li
+
conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO
4
full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the
in situ
constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3TA07586A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0003-3558-7166</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3044121056 |
source | Royal Society Of Chemistry Journals |
subjects | Batteries Carbonates Conductance Conductivity Cycles Electrolytes Ethene Glycol dimethacrylates Ion currents Kinetics Lithium Lithium batteries Lithium ions Metals Methacrylamide Molten salt electrolytes Polyethylene Polyethylene glycol Polymers Rechargeable batteries Room temperature Solid electrolytes Solid state Thickness |
title | In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20construction%20of%20an%20ultra-thin%20and%20flexible%20polymer%20electrolyte%20for%20stable%20all-solid-state%20lithium-metal%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Shilun&rft.date=2024-04-23&rft.volume=12&rft.issue=16&rft.spage=9469&rft.epage=9477&rft.pages=9469-9477&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA07586A&rft_dat=%3Cproquest_cross%3E3044121056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044121056&rft_id=info:pmid/&rfr_iscdi=true |