In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries

Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477
Hauptverfasser: Gao, Shilun, Ma, Mengxiang, Zhang, Youjia, Li, Lin, Zhu, Shuangshuang, He, Yayue, Yang, Dandan, Yang, Huabin, Cao, Peng-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9477
container_issue 16
container_start_page 9469
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Gao, Shilun
Ma, Mengxiang
Zhang, Youjia
Li, Lin
Zhu, Shuangshuang
He, Yayue
Yang, Dandan
Yang, Huabin
Cao, Peng-Fei
description Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li + diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an in situ polymerized network, i.e ., poly[(poly(ethylene glycol) methyl ether methacrylate)- r -(vinyl ethylene carbonate)- r -(dimethyl aminopropyl methacrylamide)- r -(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10 −2 mS cm −1 , such an in situ constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li + conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO 4 full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the in situ constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.
doi_str_mv 10.1039/D3TA07586A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044121056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044121056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</originalsourceid><addsrcrecordid>eNpFUMtqwzAQFKWFhjSXfoGgt4LalWXL9jGkr0Cgl_RsJHtFFRQrlWRo_r4KKe1edmdnmIEh5JbDAwfRPj6J7RLqqpHLCzIroAJWl628_Lub5posYtxBngZAtu2MHNcjjTZNtPdjTGHqk_Uj9YaqkU4uBcXSpx0zGqhx-G21Q3rw7rjHQNFhn0IGCanxgcakTrRyjkXv7MDyI1POZotpz_aYlKNapYTBYrwhV0a5iIvfPScfL8_b1RvbvL-uV8sN6wveJFZqoaAsG1PjoBvgYAapmkK2Jcqhr2peiqJFWeqhVRWoQgM3skaozWAKLbSYk7uz7yH4rwlj6nZ-CmOO7EQ25gWHSmbV_VnVBx9jQNMdgt2rcOw4dKd2u_92xQ9ocW5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044121056</pqid></control><display><type>article</type><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</creator><creatorcontrib>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</creatorcontrib><description>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li + diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an in situ polymerized network, i.e ., poly[(poly(ethylene glycol) methyl ether methacrylate)- r -(vinyl ethylene carbonate)- r -(dimethyl aminopropyl methacrylamide)- r -(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10 −2 mS cm −1 , such an in situ constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li + conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO 4 full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the in situ constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D3TA07586A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Carbonates ; Conductance ; Conductivity ; Cycles ; Electrolytes ; Ethene ; Glycol dimethacrylates ; Ion currents ; Kinetics ; Lithium ; Lithium batteries ; Lithium ions ; Metals ; Methacrylamide ; Molten salt electrolytes ; Polyethylene ; Polyethylene glycol ; Polymers ; Rechargeable batteries ; Room temperature ; Solid electrolytes ; Solid state ; Thickness</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</cites><orcidid>0000-0003-2391-1838 ; 0000-0003-3558-7166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Gao, Shilun</creatorcontrib><creatorcontrib>Ma, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Youjia</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhu, Shuangshuang</creatorcontrib><creatorcontrib>He, Yayue</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Yang, Huabin</creatorcontrib><creatorcontrib>Cao, Peng-Fei</creatorcontrib><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li + diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an in situ polymerized network, i.e ., poly[(poly(ethylene glycol) methyl ether methacrylate)- r -(vinyl ethylene carbonate)- r -(dimethyl aminopropyl methacrylamide)- r -(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10 −2 mS cm −1 , such an in situ constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li + conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO 4 full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the in situ constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</description><subject>Batteries</subject><subject>Carbonates</subject><subject>Conductance</subject><subject>Conductivity</subject><subject>Cycles</subject><subject>Electrolytes</subject><subject>Ethene</subject><subject>Glycol dimethacrylates</subject><subject>Ion currents</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium ions</subject><subject>Metals</subject><subject>Methacrylamide</subject><subject>Molten salt electrolytes</subject><subject>Polyethylene</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thickness</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFUMtqwzAQFKWFhjSXfoGgt4LalWXL9jGkr0Cgl_RsJHtFFRQrlWRo_r4KKe1edmdnmIEh5JbDAwfRPj6J7RLqqpHLCzIroAJWl628_Lub5posYtxBngZAtu2MHNcjjTZNtPdjTGHqk_Uj9YaqkU4uBcXSpx0zGqhx-G21Q3rw7rjHQNFhn0IGCanxgcakTrRyjkXv7MDyI1POZotpz_aYlKNapYTBYrwhV0a5iIvfPScfL8_b1RvbvL-uV8sN6wveJFZqoaAsG1PjoBvgYAapmkK2Jcqhr2peiqJFWeqhVRWoQgM3skaozWAKLbSYk7uz7yH4rwlj6nZ-CmOO7EQ25gWHSmbV_VnVBx9jQNMdgt2rcOw4dKd2u_92xQ9ocW5I</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Gao, Shilun</creator><creator>Ma, Mengxiang</creator><creator>Zhang, Youjia</creator><creator>Li, Lin</creator><creator>Zhu, Shuangshuang</creator><creator>He, Yayue</creator><creator>Yang, Dandan</creator><creator>Yang, Huabin</creator><creator>Cao, Peng-Fei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0003-3558-7166</orcidid></search><sort><creationdate>20240423</creationdate><title>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</title><author>Gao, Shilun ; Ma, Mengxiang ; Zhang, Youjia ; Li, Lin ; Zhu, Shuangshuang ; He, Yayue ; Yang, Dandan ; Yang, Huabin ; Cao, Peng-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-4b3a0448f7edb8010fd6a82694e6dc5714329e64bd9a50a2b01f67e07fdf2b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Carbonates</topic><topic>Conductance</topic><topic>Conductivity</topic><topic>Cycles</topic><topic>Electrolytes</topic><topic>Ethene</topic><topic>Glycol dimethacrylates</topic><topic>Ion currents</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium ions</topic><topic>Metals</topic><topic>Methacrylamide</topic><topic>Molten salt electrolytes</topic><topic>Polyethylene</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shilun</creatorcontrib><creatorcontrib>Ma, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Youjia</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Zhu, Shuangshuang</creatorcontrib><creatorcontrib>He, Yayue</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Yang, Huabin</creatorcontrib><creatorcontrib>Cao, Peng-Fei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Shilun</au><au>Ma, Mengxiang</au><au>Zhang, Youjia</au><au>Li, Lin</au><au>Zhu, Shuangshuang</au><au>He, Yayue</au><au>Yang, Dandan</au><au>Yang, Huabin</au><au>Cao, Peng-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-23</date><risdate>2024</risdate><volume>12</volume><issue>16</issue><spage>9469</spage><epage>9477</epage><pages>9469-9477</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Solid polymer electrolytes (SPEs) with low density, high flexibility and excellent processability have been attracting broad interest in constructing high energy density and safe all-solid-state batteries. However, the poor lithium-ion (Li + ) migration kinetics should be addressed before their large-scale applications. Reducing the thickness can efficiently shorten the Li + diffusion distance and time, making the low ionic conductivity of electrolytes still applicable for practical applications. Herein, by integrating polyethylene fiber (PEF) with an in situ polymerized network, i.e ., poly[(poly(ethylene glycol) methyl ether methacrylate)- r -(vinyl ethylene carbonate)- r -(dimethyl aminopropyl methacrylamide)- r -(polyethylene glycol dimethacrylate)] (PPVD), an ultra-thin, flexible and mechanically robust SPE with a thickness of ≈5 μm was developed. With an ionic conductivity of 2.0 × 10 −2 mS cm −1 , such an in situ constructed ultra-thin SPE still exhibits a high ionic conductance of 0.1 S, providing sufficient Li + conductance for operable batteries at room temperature. As a result, the assembled Li|PPVD@PEF|Li symmetric cell delivers stable cycling performance over 800 h. The Li|PPVD@PEF|LiFePO 4 full cell exhibits excellent cycling stability with a capacity retention of 85.7% over 500 cycles. The current design of the in situ constructed ultra-thin SPE not only decreases the electrolyte/electrode interfacial resistance but also sheds light on breaking the bottleneck of ionic conductivity for SPEs towards high energy density batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D3TA07586A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2391-1838</orcidid><orcidid>https://orcid.org/0000-0003-3558-7166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (16), p.9469-9477
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3044121056
source Royal Society Of Chemistry Journals
subjects Batteries
Carbonates
Conductance
Conductivity
Cycles
Electrolytes
Ethene
Glycol dimethacrylates
Ion currents
Kinetics
Lithium
Lithium batteries
Lithium ions
Metals
Methacrylamide
Molten salt electrolytes
Polyethylene
Polyethylene glycol
Polymers
Rechargeable batteries
Room temperature
Solid electrolytes
Solid state
Thickness
title In situ construction of an ultra-thin and flexible polymer electrolyte for stable all-solid-state lithium-metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20construction%20of%20an%20ultra-thin%20and%20flexible%20polymer%20electrolyte%20for%20stable%20all-solid-state%20lithium-metal%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Shilun&rft.date=2024-04-23&rft.volume=12&rft.issue=16&rft.spage=9469&rft.epage=9477&rft.pages=9469-9477&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D3TA07586A&rft_dat=%3Cproquest_cross%3E3044121056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044121056&rft_id=info:pmid/&rfr_iscdi=true