Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers

Second‐order distributed feedback (DFB) resonators are widely used for thin‐film lasers as they combine low lasing thresholds with ease of manufacturing. Here, the grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on a single substrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-04, Vol.12 (12), p.n/a
Hauptverfasser: Annavarapu, Nirav, Goldberg, Iakov, Hamdad, Sarah, Elkhouly, Karim, Puybaret, Renaud, Sabuncuoglu Tezcan, Deniz, Genoe, Jan, Gehlhaar, Robert, Heremans, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced optical materials
container_volume 12
creator Annavarapu, Nirav
Goldberg, Iakov
Hamdad, Sarah
Elkhouly, Karim
Puybaret, Renaud
Sabuncuoglu Tezcan, Deniz
Genoe, Jan
Gehlhaar, Robert
Heremans, Paul
description Second‐order distributed feedback (DFB) resonators are widely used for thin‐film lasers as they combine low lasing thresholds with ease of manufacturing. Here, the grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on a single substrate that contains hundreds of high‐quality silicon nitride surface gratings. The lowest lasing threshold (≈130 µJ cm−2) is identified through the aid of near‐field and far‐field imaging spectroscopy in a four‐dimensional design space composed of grating period, duty cycle, active layer thickness, and cavity length. Moreover, it is shown that antisymmetric modes support high‐quality lasing (Q up to ≈10800) in the second‐order DFBs. The multi‐dimensional experimental analysis is accompanied by a thorough theoretical study with a semi‐empirical model based on coupled wave equations, which is used to investigate the lasing characteristics beyond the manufacturing range. The results can be applied to a broad range of thin‐film DFB resonators, enabling the design of more complex laser stack configurations including light‐emitting devices for current‐injection lasing. The second‐order distributed feedback grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on high‐quality silicon nitride surface gratings. The measured lasing characteristics are modulated by the grating period, duty cycle, perovskite layer thickness, and cavity length. The performance of the resonators is validated using a semi‐empirical model based on coupled wave equations.
doi_str_mv 10.1002/adom.202302496
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044091469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044091469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3126-e0d6fab7bc393c344c576a82fbe435ce46783e36435df0f02c8ce4aeb1cbe253</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEhX0ytkS5xT_xWmOVUMpUlFB7d1ynE1xf-Jip6DeeASekSfBVRFw47Szq29WmkHoipIeJYTd6MpteowwTpjI5QnqMJqnCSUZPf2jz1E3hCUhJC48F1kH6ZHb-c_3j8JuoAnWNXqNCwh20eDZVhvArsZju3iOyBOegXFNFeXUV-BxYUPrbblrocIjgKrUZoUfwbvXsLIt4IkO4MMlOqv1OkD3e16g-eh2Phwnk-nd_XAwSQynTCZAKlnrMisNz7nhQpg0k7rP6hIETw0ImfU5cBmXqiY1YaYfjxpKakpgKb9A18e3W-9edhBatYzJYpygOBGC5FTIPFK9I2W8C8FDrbbebrTfK0rUoUh1KFL9FBkN-dHwZtew_4dWg2L68Ov9Al24enw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044091469</pqid></control><display><type>article</type><title>Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Annavarapu, Nirav ; Goldberg, Iakov ; Hamdad, Sarah ; Elkhouly, Karim ; Puybaret, Renaud ; Sabuncuoglu Tezcan, Deniz ; Genoe, Jan ; Gehlhaar, Robert ; Heremans, Paul</creator><creatorcontrib>Annavarapu, Nirav ; Goldberg, Iakov ; Hamdad, Sarah ; Elkhouly, Karim ; Puybaret, Renaud ; Sabuncuoglu Tezcan, Deniz ; Genoe, Jan ; Gehlhaar, Robert ; Heremans, Paul</creatorcontrib><description>Second‐order distributed feedback (DFB) resonators are widely used for thin‐film lasers as they combine low lasing thresholds with ease of manufacturing. Here, the grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on a single substrate that contains hundreds of high‐quality silicon nitride surface gratings. The lowest lasing threshold (≈130 µJ cm−2) is identified through the aid of near‐field and far‐field imaging spectroscopy in a four‐dimensional design space composed of grating period, duty cycle, active layer thickness, and cavity length. Moreover, it is shown that antisymmetric modes support high‐quality lasing (Q up to ≈10800) in the second‐order DFBs. The multi‐dimensional experimental analysis is accompanied by a thorough theoretical study with a semi‐empirical model based on coupled wave equations, which is used to investigate the lasing characteristics beyond the manufacturing range. The results can be applied to a broad range of thin‐film DFB resonators, enabling the design of more complex laser stack configurations including light‐emitting devices for current‐injection lasing. The second‐order distributed feedback grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on high‐quality silicon nitride surface gratings. The measured lasing characteristics are modulated by the grating period, duty cycle, perovskite layer thickness, and cavity length. The performance of the resonators is validated using a semi‐empirical model based on coupled wave equations.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202302496</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>cavity design ; coupled wave theory ; Design parameters ; Dimensional analysis ; distributed feedback lasers ; Empirical equations ; Feedback ; high‐Q lasing ; Lasers ; Lasing ; Lead compounds ; Manufacturing ; metal halide perovskites ; Metal halides ; perovskite lasers ; Perovskites ; Resonators ; Silicon nitride ; Substrates ; Thickness ; Thin films ; Wave equations</subject><ispartof>Advanced optical materials, 2024-04, Vol.12 (12), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3126-e0d6fab7bc393c344c576a82fbe435ce46783e36435df0f02c8ce4aeb1cbe253</cites><orcidid>0000-0003-0534-8674 ; 0000-0002-3852-2651 ; 0000-0002-4019-5979 ; 0000-0001-6128-0817 ; 0000-0002-3038-9462 ; 0000-0002-4946-2658 ; 0000-0003-2151-1718 ; 0000-0002-9877-9504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202302496$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202302496$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Annavarapu, Nirav</creatorcontrib><creatorcontrib>Goldberg, Iakov</creatorcontrib><creatorcontrib>Hamdad, Sarah</creatorcontrib><creatorcontrib>Elkhouly, Karim</creatorcontrib><creatorcontrib>Puybaret, Renaud</creatorcontrib><creatorcontrib>Sabuncuoglu Tezcan, Deniz</creatorcontrib><creatorcontrib>Genoe, Jan</creatorcontrib><creatorcontrib>Gehlhaar, Robert</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><title>Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers</title><title>Advanced optical materials</title><description>Second‐order distributed feedback (DFB) resonators are widely used for thin‐film lasers as they combine low lasing thresholds with ease of manufacturing. Here, the grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on a single substrate that contains hundreds of high‐quality silicon nitride surface gratings. The lowest lasing threshold (≈130 µJ cm−2) is identified through the aid of near‐field and far‐field imaging spectroscopy in a four‐dimensional design space composed of grating period, duty cycle, active layer thickness, and cavity length. Moreover, it is shown that antisymmetric modes support high‐quality lasing (Q up to ≈10800) in the second‐order DFBs. The multi‐dimensional experimental analysis is accompanied by a thorough theoretical study with a semi‐empirical model based on coupled wave equations, which is used to investigate the lasing characteristics beyond the manufacturing range. The results can be applied to a broad range of thin‐film DFB resonators, enabling the design of more complex laser stack configurations including light‐emitting devices for current‐injection lasing. The second‐order distributed feedback grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on high‐quality silicon nitride surface gratings. The measured lasing characteristics are modulated by the grating period, duty cycle, perovskite layer thickness, and cavity length. The performance of the resonators is validated using a semi‐empirical model based on coupled wave equations.</description><subject>cavity design</subject><subject>coupled wave theory</subject><subject>Design parameters</subject><subject>Dimensional analysis</subject><subject>distributed feedback lasers</subject><subject>Empirical equations</subject><subject>Feedback</subject><subject>high‐Q lasing</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Lead compounds</subject><subject>Manufacturing</subject><subject>metal halide perovskites</subject><subject>Metal halides</subject><subject>perovskite lasers</subject><subject>Perovskites</subject><subject>Resonators</subject><subject>Silicon nitride</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Wave equations</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEhX0ytkS5xT_xWmOVUMpUlFB7d1ynE1xf-Jip6DeeASekSfBVRFw47Szq29WmkHoipIeJYTd6MpteowwTpjI5QnqMJqnCSUZPf2jz1E3hCUhJC48F1kH6ZHb-c_3j8JuoAnWNXqNCwh20eDZVhvArsZju3iOyBOegXFNFeXUV-BxYUPrbblrocIjgKrUZoUfwbvXsLIt4IkO4MMlOqv1OkD3e16g-eh2Phwnk-nd_XAwSQynTCZAKlnrMisNz7nhQpg0k7rP6hIETw0ImfU5cBmXqiY1YaYfjxpKakpgKb9A18e3W-9edhBatYzJYpygOBGC5FTIPFK9I2W8C8FDrbbebrTfK0rUoUh1KFL9FBkN-dHwZtew_4dWg2L68Ov9Al24enw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Annavarapu, Nirav</creator><creator>Goldberg, Iakov</creator><creator>Hamdad, Sarah</creator><creator>Elkhouly, Karim</creator><creator>Puybaret, Renaud</creator><creator>Sabuncuoglu Tezcan, Deniz</creator><creator>Genoe, Jan</creator><creator>Gehlhaar, Robert</creator><creator>Heremans, Paul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0534-8674</orcidid><orcidid>https://orcid.org/0000-0002-3852-2651</orcidid><orcidid>https://orcid.org/0000-0002-4019-5979</orcidid><orcidid>https://orcid.org/0000-0001-6128-0817</orcidid><orcidid>https://orcid.org/0000-0002-3038-9462</orcidid><orcidid>https://orcid.org/0000-0002-4946-2658</orcidid><orcidid>https://orcid.org/0000-0003-2151-1718</orcidid><orcidid>https://orcid.org/0000-0002-9877-9504</orcidid></search><sort><creationdate>20240401</creationdate><title>Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers</title><author>Annavarapu, Nirav ; Goldberg, Iakov ; Hamdad, Sarah ; Elkhouly, Karim ; Puybaret, Renaud ; Sabuncuoglu Tezcan, Deniz ; Genoe, Jan ; Gehlhaar, Robert ; Heremans, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3126-e0d6fab7bc393c344c576a82fbe435ce46783e36435df0f02c8ce4aeb1cbe253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cavity design</topic><topic>coupled wave theory</topic><topic>Design parameters</topic><topic>Dimensional analysis</topic><topic>distributed feedback lasers</topic><topic>Empirical equations</topic><topic>Feedback</topic><topic>high‐Q lasing</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Lead compounds</topic><topic>Manufacturing</topic><topic>metal halide perovskites</topic><topic>Metal halides</topic><topic>perovskite lasers</topic><topic>Perovskites</topic><topic>Resonators</topic><topic>Silicon nitride</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Annavarapu, Nirav</creatorcontrib><creatorcontrib>Goldberg, Iakov</creatorcontrib><creatorcontrib>Hamdad, Sarah</creatorcontrib><creatorcontrib>Elkhouly, Karim</creatorcontrib><creatorcontrib>Puybaret, Renaud</creatorcontrib><creatorcontrib>Sabuncuoglu Tezcan, Deniz</creatorcontrib><creatorcontrib>Genoe, Jan</creatorcontrib><creatorcontrib>Gehlhaar, Robert</creatorcontrib><creatorcontrib>Heremans, Paul</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Annavarapu, Nirav</au><au>Goldberg, Iakov</au><au>Hamdad, Sarah</au><au>Elkhouly, Karim</au><au>Puybaret, Renaud</au><au>Sabuncuoglu Tezcan, Deniz</au><au>Genoe, Jan</au><au>Gehlhaar, Robert</au><au>Heremans, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers</atitle><jtitle>Advanced optical materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>12</volume><issue>12</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Second‐order distributed feedback (DFB) resonators are widely used for thin‐film lasers as they combine low lasing thresholds with ease of manufacturing. Here, the grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on a single substrate that contains hundreds of high‐quality silicon nitride surface gratings. The lowest lasing threshold (≈130 µJ cm−2) is identified through the aid of near‐field and far‐field imaging spectroscopy in a four‐dimensional design space composed of grating period, duty cycle, active layer thickness, and cavity length. Moreover, it is shown that antisymmetric modes support high‐quality lasing (Q up to ≈10800) in the second‐order DFBs. The multi‐dimensional experimental analysis is accompanied by a thorough theoretical study with a semi‐empirical model based on coupled wave equations, which is used to investigate the lasing characteristics beyond the manufacturing range. The results can be applied to a broad range of thin‐film DFB resonators, enabling the design of more complex laser stack configurations including light‐emitting devices for current‐injection lasing. The second‐order distributed feedback grating design parameters are varied to map the lasing characteristics of lead halide perovskite films deposited on high‐quality silicon nitride surface gratings. The measured lasing characteristics are modulated by the grating period, duty cycle, perovskite layer thickness, and cavity length. The performance of the resonators is validated using a semi‐empirical model based on coupled wave equations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202302496</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0534-8674</orcidid><orcidid>https://orcid.org/0000-0002-3852-2651</orcidid><orcidid>https://orcid.org/0000-0002-4019-5979</orcidid><orcidid>https://orcid.org/0000-0001-6128-0817</orcidid><orcidid>https://orcid.org/0000-0002-3038-9462</orcidid><orcidid>https://orcid.org/0000-0002-4946-2658</orcidid><orcidid>https://orcid.org/0000-0003-2151-1718</orcidid><orcidid>https://orcid.org/0000-0002-9877-9504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-04, Vol.12 (12), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3044091469
source Wiley Online Library Journals Frontfile Complete
subjects cavity design
coupled wave theory
Design parameters
Dimensional analysis
distributed feedback lasers
Empirical equations
Feedback
high‐Q lasing
Lasers
Lasing
Lead compounds
Manufacturing
metal halide perovskites
Metal halides
perovskite lasers
Perovskites
Resonators
Silicon nitride
Substrates
Thickness
Thin films
Wave equations
title Four‐Dimensional Design Space of High‐Q Second‐Order Distributed Feedback Perovskite Lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%E2%80%90Dimensional%20Design%20Space%20of%20High%E2%80%90Q%20Second%E2%80%90Order%20Distributed%20Feedback%20Perovskite%20Lasers&rft.jtitle=Advanced%20optical%20materials&rft.au=Annavarapu,%20Nirav&rft.date=2024-04-01&rft.volume=12&rft.issue=12&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202302496&rft_dat=%3Cproquest_cross%3E3044091469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044091469&rft_id=info:pmid/&rfr_iscdi=true