Bayesian Windkessel calibration using optimized 0D surrogate models

Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Richter, Jakob, Nitzler, Jonas, Pegolotti, Luca, Menon, Karthik, Biehler, Jonas, Wall, Wolfgang A, Schiavazzi, Daniele E, Marsden, Alison L, Pfaller, Martin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Richter, Jakob
Nitzler, Jonas
Pegolotti, Luca
Menon, Karthik
Biehler, Jonas
Wall, Wolfgang A
Schiavazzi, Daniele E
Marsden, Alison L
Pfaller, Martin R
description Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044062365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044062365</sourcerecordid><originalsourceid>FETCH-proquest_journals_30440623653</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQZcF2LSVtdWxQMILiXasUxNk5pJFnp6XXgAV3_x_kRkSutVsSmVmomcuZdSqnqtqkpnotmaFzIZB2dy7QOZ0cLNWLoGE8k7SEyuAz9GGuiNLcgdcArBdyYiDL5FywsxvRvLmP86F8vD_tQcizH4Z0KOl96n4L500bIsZa10Xen_rg8wkDqG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044062365</pqid></control><display><type>article</type><title>Bayesian Windkessel calibration using optimized 0D surrogate models</title><source>Free E- Journals</source><creator>Richter, Jakob ; Nitzler, Jonas ; Pegolotti, Luca ; Menon, Karthik ; Biehler, Jonas ; Wall, Wolfgang A ; Schiavazzi, Daniele E ; Marsden, Alison L ; Pfaller, Martin R</creator><creatorcontrib>Richter, Jakob ; Nitzler, Jonas ; Pegolotti, Luca ; Menon, Karthik ; Biehler, Jonas ; Wall, Wolfgang A ; Schiavazzi, Daniele E ; Marsden, Alison L ; Pfaller, Martin R</creatorcontrib><description>Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Bayesian analysis ; Boundary conditions ; Calibration ; Fluid dynamics ; Identification methods ; Mathematical models ; Parameter identification ; Simulation ; Three dimensional models</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Richter, Jakob</creatorcontrib><creatorcontrib>Nitzler, Jonas</creatorcontrib><creatorcontrib>Pegolotti, Luca</creatorcontrib><creatorcontrib>Menon, Karthik</creatorcontrib><creatorcontrib>Biehler, Jonas</creatorcontrib><creatorcontrib>Wall, Wolfgang A</creatorcontrib><creatorcontrib>Schiavazzi, Daniele E</creatorcontrib><creatorcontrib>Marsden, Alison L</creatorcontrib><creatorcontrib>Pfaller, Martin R</creatorcontrib><title>Bayesian Windkessel calibration using optimized 0D surrogate models</title><title>arXiv.org</title><description>Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Boundary conditions</subject><subject>Calibration</subject><subject>Fluid dynamics</subject><subject>Identification methods</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Simulation</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQZcF2LSVtdWxQMILiXasUxNk5pJFnp6XXgAV3_x_kRkSutVsSmVmomcuZdSqnqtqkpnotmaFzIZB2dy7QOZ0cLNWLoGE8k7SEyuAz9GGuiNLcgdcArBdyYiDL5FywsxvRvLmP86F8vD_tQcizH4Z0KOl96n4L500bIsZa10Xen_rg8wkDqG</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Richter, Jakob</creator><creator>Nitzler, Jonas</creator><creator>Pegolotti, Luca</creator><creator>Menon, Karthik</creator><creator>Biehler, Jonas</creator><creator>Wall, Wolfgang A</creator><creator>Schiavazzi, Daniele E</creator><creator>Marsden, Alison L</creator><creator>Pfaller, Martin R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240729</creationdate><title>Bayesian Windkessel calibration using optimized 0D surrogate models</title><author>Richter, Jakob ; Nitzler, Jonas ; Pegolotti, Luca ; Menon, Karthik ; Biehler, Jonas ; Wall, Wolfgang A ; Schiavazzi, Daniele E ; Marsden, Alison L ; Pfaller, Martin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30440623653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Boundary conditions</topic><topic>Calibration</topic><topic>Fluid dynamics</topic><topic>Identification methods</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Simulation</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Richter, Jakob</creatorcontrib><creatorcontrib>Nitzler, Jonas</creatorcontrib><creatorcontrib>Pegolotti, Luca</creatorcontrib><creatorcontrib>Menon, Karthik</creatorcontrib><creatorcontrib>Biehler, Jonas</creatorcontrib><creatorcontrib>Wall, Wolfgang A</creatorcontrib><creatorcontrib>Schiavazzi, Daniele E</creatorcontrib><creatorcontrib>Marsden, Alison L</creatorcontrib><creatorcontrib>Pfaller, Martin R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Jakob</au><au>Nitzler, Jonas</au><au>Pegolotti, Luca</au><au>Menon, Karthik</au><au>Biehler, Jonas</au><au>Wall, Wolfgang A</au><au>Schiavazzi, Daniele E</au><au>Marsden, Alison L</au><au>Pfaller, Martin R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Windkessel calibration using optimized 0D surrogate models</atitle><jtitle>arXiv.org</jtitle><date>2024-07-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Boundary condition (BC) calibration to assimilate clinical measurements is an essential step in any subject-specific simulation of cardiovascular fluid dynamics. Bayesian calibration approaches have successfully quantified the uncertainties inherent in identified parameters. Yet, routinely estimating the posterior distribution for all BC parameters in 3D simulations has been unattainable due to the infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors using results from a single high-fidelity three-dimensional (3D) model evaluation. We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. We validate this approach in a publicly available dataset of N=72 subject-specific vascular models. We found that optimizing 0D models to match 3D data a priori lowered their median approximation error by nearly one order of magnitude. In a subset of models, we confirm that the optimized 0D models still generalize to a wide range of BCs. Finally, we present the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model using SMC. We further validate that the 0D-derived posterior is a good approximation of the 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3044062365
source Free E- Journals
subjects Approximation
Bayesian analysis
Boundary conditions
Calibration
Fluid dynamics
Identification methods
Mathematical models
Parameter identification
Simulation
Three dimensional models
title Bayesian Windkessel calibration using optimized 0D surrogate models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Windkessel%20calibration%20using%20optimized%200D%20surrogate%20models&rft.jtitle=arXiv.org&rft.au=Richter,%20Jakob&rft.date=2024-07-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044062365%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044062365&rft_id=info:pmid/&rfr_iscdi=true